
9. Analysis and resynthesis procedures
(This section last updated June 2002)

This section provides tutorial information on threeanalysis/resynthesistechniques available on the
ECMC SGI and Linux systems:

• phase vocoderprograms analyze the changing signal energy within hundreds or thousands of very
narrow frequency bands; during resynthesis, the signal is reconstructed, but modifications in pitch,
duration or other parameters can be introduced
• sms ("Spectral Modeling Synthesis") is a package of programs originally developed at CCRMA
(Stanford University) in which sounds are divided into a periodic (pitched) component, analyzed in a
manner similar to phase vocoder procedures, and a "stochastic" (aperiodic) component, analyzed as
filtered white noise.smsresynthesis techniques provide a broad range of sound modification possi-
bilities, including timbral morphing, but work much better with certain types of sounds than with oth-
ers.
• linear predictor coding (lpc) analysis and resynthesis programs do not attempt to captureevery
frequency component within a source sound,but rather to capture time-varying spectralformants(res-
onances, or emphasized narrow frequency bands). Spectral formant analyses created bylpc software
can be used with Eastman Csound Library instrument algorithmresyn to produce varied resynthesis
of a sound, or with algorithmxsynto create a hybrid, cross-synthesized "child" sound thathas some
characteristics of its two "parent" sounds;lpc resynthesis and cross-synthesis also can be performed
with themixviewsapplication.

All analysis/resynthesisprocedures (there are others in addition to the three surveyed here) involve
two steps:

(1) time varying spectral (timbral) and amplitude analysis, and sometimes pitch analysis as well, of a
source sound;
(2) resynthesis operations, in which this analysis data is used to create a new soundfile, generally
with modifications such as pitch shifting, timbral modifications, time warping (expansion or contrac-
tion of the original duration) or formant shifting (changing the apparent size or physical characteris-
tics of the vibrating object)

In most cases:
• the source soundfile to be analyzed must be monophonic

Exceptions: Themixviews application can perform bothphase vocoderand (often less successfully)lpc analysis and

resynthesis onstereoas well as mono soundfiles. ThePVCprograms can be used with input soundfiles with any num-

ber of input channels.

• the analysis and resynthesis operations are performed in succession, rather than simultaneously.

First one performs spectral analysis of a source soundfile.Most often, the resulting analysis
data is written into a file, and the data within this analysis file is then used to perform resynthe-
sis. Onceone has obtained a usable analysis file, this file can be used any number of times to
perform various types of resynthesis.
Exceptions: TheCeresphase vocoder application stores the analysis data in RAM for immediate resynthesis, and pro-

vides no means to save this analysis data permanently to a file.In most of thePVCprograms, analysis and resynthesis

are performed in a single, continuous operation, and the analysis is not saved. However, the PVC programpvanalysis

does write analyses to disk files, and these analysis files can then be used with a few of the resynthesis programs, such

astwarp.

Because these analysis files are very large — sometimes larger than the source soundfiles themselves
— we store them on thesnddisks rather than on the smaller system disks ofarcanaandsyrinx. When you
launch any of the analysis or resynthesis programs discussed here, the program automatically moves into
current working home soundfile directory ($SFDIR), and will write all new files you create to your$SFDIR
unless you specify an alternative subdirectory or path. In naming your analysis files, be sure that the name
you provide will indicate to you in the future that the file is a phase vocoder, smsor lpc analysis file (which
is not playable), rather than a soundfile.

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 1

9.0 Analysis and resynthesis procedures

In addition, thesflib directories include ananal ("analysis file") subdirectory, which in turn includes
the following subdirectories:

/sflib/anal/pv : includes phase vocoder analysis files available to all users
We hav eplaced only a few files here, because phase vocoder analysis files tend to be very large, and they can be easily recre-

ated.

/sflib/anal/sms: includessmsanalysis files available to all users
/sflib/anal/lpc : includes linear prediction analysis files available to all users

All three of the techniques surveyed here share certain common capabilities.For example,analy-
sis/resynthesisprocedures generally provide independent control of pitch and duration, so that during
resynthesis one can change the pitch of a sound without altering its duration, or vice versa. Notethat this
generally is not possible with most hardware or software resampling techniques, such as those provided by
ECMC Csound Library algorithmssampand tsamp. Some sequencer, signal processing and plug-in pro-
grams, such asLogic Audio, Peak, HyperprismandProTools, provide time expansion and contraction by a
different technique — by duplicating groups of samples to extend the duration, or eliminating groups of
samples to reduce the duration.With some periodic sounds this works fairly well, but artifacts and glitches
often result, especially with more complex sounds.

Phase vocoder, sms and lpc procedures each have unique capabilities — not available, or not
obtained as easily or with as much control, by means of the other two techniques. And each has limitations
and pitfalls as well. Here are a few general guidelines:

Most phase vocoderprocedures are comparatively easy to use, presenting the user with relatively few deci-
sions, but offer a comparatively narrow range of resynthesis modification possibilities, often limited to time
warping and/or pitch shifting. However, extensions to these basic procedures, available within thePVCpro-
grams, provide many additional possibilities for sound modification.

Advantages: ease of use; often works fairly well, and sometimes very well, on a wide range of har-
monic (pitched) and inharmonic sound sources; often the best or easiest method to usewith low
pitched or very high pitched sounds, with acoustically complex percussive sounds, with string tones,
and with most types of speech, especially if your resynthesis goals are fairly straightforward or lim-
ited.
Limitations and disadvantages: time stretching often introduces artifacts, notably a metallic or artifi-
cially "reverberant" or smearing quality, although there are ways to minimize such distortion; pitch
shifting also shifts the formants (resonances) of a sound, often resulting in timbral changes or an arti-
ficial timbral quality; analyses often need to be custom tailored to anticipated types of resynthesis
modifications (an analysis that works well for one type of resynthesis modification may work poorly
for other types of modifications)

sms provides some unique possibilities for timbral, pitch and durational modification during resynthesis,
but is more complicated to use, and often works much better with comparatively simple harmonic (pitched)
sounds than with inharmonic or timbrally complex source material or with speech.

Advantages: considerable flexibility in resynthesis operations;smstechniques are particularly well
suited for "morphing" between two timbres, and for "detuning" a timbre by changing the frequency
ratios between its partials; time warping usually does not introduce temporal smearing
Limitations and disadvantages: does not provide good resynthesis for many percussive or inharmonic
timbres, or for most low pitched or very high pitched harmonic timbres, which may sound anemic or
"synthetic" after resynthesis; certain types of quasi-harmonic timbres with strong noise components,
including low pitched string tones and piano tones, can be difficult or impossible to capture ade-
quately; complicated to use, sometimes requiring several attempts before a good analysis is obtained.

lpc resynthesis works well with certain types of both pitched and inharmonic timbres (e.g. woodwinds, cro-
tales, maracas and, sometimes, vocal tones and speech), but often less well, or poorly, with other, timbrally
complex types of timbres, such as piano and string tones.Cross-synthesis is often easier and more success-
ful than timbral resynthesis.

Advantages: lpc is often the bestmethod for the creation of hybrid, cross-synthesized timbres (tim-
bres in between those of two acoustic sources); unlike mostphase vocoderandsmstechniques, pitch
shifting will not result in formant shifting (unless you want it to); provides a wide range of

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 2

-3-

modification possibilities.
Limitations and disadvantages: lpc techniques are often the most complicated of the three surveyed
here, sometimes requiring several retries before the desired result is achieved; works much better
with some types of timbres than with others, and sometimes produces a buzzy quality or artifacts;
resynthesis does not captureexact frequency ratios within a sound, but rather a simplified, overly har-
monic approximation of these ratios; silences within a sound source may result in amplitude pops,
chirps and hiccups.

In addition to the information provided here, I suggest that you consult the discussions of phase vocoder,
smsand linear prediction procedures, as well as alternative analysis/resynthesis procedures, within Curtis
Road’s Computer Music Tutorial.

9.1. PhaseVocoder procedures
On the ECMC SGI and Linux systems several phase vocoder programs are available for use.Some

of these programs provide a limited range of resynthesis modification possibilities, and are comparatively
simple to use, while others provide more extensive capabilities, generally at some sacrifice in ease of use.
Some employ a graphical interface, others a Unix command-line syntax.The four programs or packages
listed below currently are the best documented and most reliable of our phase vocoder applications.Users
are encouraged to try out two or more of these alternatives to determine which best suits their working and
musical preferences:

(1) Ceres: recommended primarily as an introductory application, or for applying particular modifi-
cations to isolated sounds, rather than for systematic use; provides an excellent display of the analysis
data (the best graphical display of any program surveyed here), which can be useful in understanding
why timbres sound as they do; provides only a single analysis option; analyses and analysis settings
cannot be saved, but the program does supply some useful additions to basic resynthesis options; rec-
ommended as especially for introductory work with phase vocoding
(2) PVC : a very comprehensive and powerful collection of programs that provide many analysis
and resynthesis options. As a result of these many analysis and sound modification options, the learn-
ing curve can be rather steep.The PVC programs are run from a shell window by editing template
script files. Highly recommended for those who want to explore the full capabilities of phase vocod-
ing techniques.
(3) TheCsoundutility pvanal, used in conjunction withCsoundunit generatorpvoc or with East-
man Csound Library instrumentphavoc ; the analysis options ofpvanalare limited, but this method
provides considerable flexibility , and also is by far the best method to use if you want to construct
complete melodies, chordal sonorities or complex textures, rather than isolated sounds, by means of
phase vocoder reynthesis; beginning users can employ analyses created withpvanal in scores for
Library instrument algorithmphavoc; advanced users familiar with Csound orchestra file design can
create theirown resynthesis algorithms, which might incorporate some recently developed opcodes
that provide additional resynthesis modification possibilities.
(4) Mammut, an idiosyncratic application, quite different in approach from all of the others discussed
here, that requires an experimental, heuristic, "let’s get lucky" attitude, rather than a methodical or
systematic approach to sound modification. The resynthesis results are often surprising or unpre-
dictable — you may generate a lot of garbage soundfiles, then suddenly produce a real gem without
knowing exactly why. Recommended for those who like to tinker and experiment.
(5) mixviews is a powerful application that can be used to perform many types of signal processing
operations (phase vocoding is just one of its several modules) within a somewhat non-standard GUI
interface; initially this application may seem rather complicated to use; it provides a few unique
phase vocoing capabilities, particularly for editing and modifying analysis data, and several of
mixviews’ phase vocoder options can be applied tolpc analysis and resynthesis operations as well.
However, while the phase vocoder capabilities ofmixviews are serviceable, I do not find these to be
among the stronger features of the application. Compared with the four other applications above, the
phase vocoding techniques provided bymixviews do not provide any particular special advantages.
Thus, we will devote comparatively little time in class and in thisUsers’ Guide to phase vocoding
techniques withmixviews, and you likely will use this application more extensively in your work with
LPC procedures.

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 3

9.1 Phase vocoder procedures

Unfortunately, phase vocoder analysis files created with one application generally are not readable or
usable by other applications.Csound, for example, can only read and process phase vocoder analysis files
created withpvanal, and cannot open analysis files created withmixviews or PVC. Thus, if you use more
than one of these phase vocoder applications, it is important to know which of these applications created
each of your phase vocoder analysis files.One way to assure this is to use some consistent naming proce-
dure when creating analysis files, such as using consistent file name extensions or prefixes.

Thus, if we have created two phase vocoder analysis files of thesflib/string soundfilevln.b3, one with thePVC program
pvanalysisand one withpvanalfor use withCsound, we might call these files

vln.b3.pvcor perhapspvcanal.vln.b3 (PVC)
vln.b3.pvanal or vanal.f2vln.b3
(pvanal/Csound)

Alternatively, we might prefer to include a file name extension such as.pvwhen naming all of these files, but to place them in
separate subdirectories, one of which contains all of ourPVCanalysis files, another of which includes all analysis files created
with theCsoundutility pvanal.

The discussion below focuses primarily — but not exclusively — on the four applications listed
above. Phase vocoder operations are the most widely used type of analysis/resynthesis procedures, onWin-
dowsand Macintosh as well as Linux/Unix systems.For this reason, the discussion that follows includes
some generalized information applicable to almost all phase vocoder operations.

Analysis parameters

Various phase vocoder analysis applications differ in the number of required and optional arguments
that can or must be provided by the user, and sometimes also in the scale or range of usable values for cer-
tain parameters.Ceresand Csound’s pvanalprovide relatively few analysis argument options, employing
default values that cannot be changed for most analysis parameters. Beginning users may welcome this
"lack of complication." One problem with such programs, however, is that if the resulting analysis does not
provide successful resynthesis, or works with certain types of resynthesis modifications, but not with oth-
ers, there is relatively little that the user can do to improve the analysis. Other programs, and in particular
the PVC programs, initially may confront us with more parameter decisions than we would like; however,
these "hooks" can provide a means to improve an unsatisfactory analysis, or to tailor an analysis to particu-
lar resynthesis goals.

A majority of phase vocoder analysis programs include at least two analysis parameters:

(1) Fr equency (spectral) resolution :Number of FFT filters:
This value, often abbreviatedN or FFT, determines the number ofFast Fourier Transformbandpass filters
to be used in the analysis.The argument must be an integer and a power-of-two. Most often, the default
value is 1024.A higher value, such as 2048 or even 4096, sometimes is necessary or desirable for adequate
frequency resolution of complex timbres. Occasionally, 512 filters works better. The larger the number of
filters, the slower the computation time, and the larger the resulting file.

The center frequencies of the filters are even spaced between 0 herz and the Nyquist frequency (1/2
of the sampling rate). The frequency resolution of the filters is

nyquist freq. / (FFT / 2)
[thenyquist frequencydivided by theFFT value divided by 2]

Thus, with a 44100 herz soundfile and anFFT size of 1024, the frequency resolution is
22050 / (1024/2)= 22050/512 = 43.066 herz

In other words, the filters are centered about 43 herz apart, at 0 hz., 43 hz., 86 hz., and so on up to 22 kHz.
If the source soundfile had a 22k sampling rate, the filters would instead be centered 21.533 herz apart.

The goal in setting theFFT size is to set it high enough that no more than one frequency component
within the source sound spectrum lies within any individual filter,1 but also, for reasons discussed below,
not to set this value any higher than necessary to achieve this end. Thus, if the source sound is a high
pitched flute tone, anFFT size of 1024 will probably do just fine (the partials of the flute tone are fairly far
apart). By contrast, if the sound you are analyzing is a cymbal, or a very low piano tone (both of which may
contain partials that are closer in frequency than 43 herz), a higherFFT value of 2048 or even 4096 may

1 If two frequencies lie within a single filter band, they will "fuse" into a single resynthesis frequency with
strong amplitude beating, resulting in timbral distortion.Generally, this is undesirable and will sound bad, but
in certain cases it can produce interesting modifications to a source sound.

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 4

9.1 Phase vocoder procedures

yield better results.However, some analysis programs, includingpvanal, do not allow more than 1024 fil-
ters, although this limitation soon may be changed.

(2) Analysis period :Window (Frame) Size:
This parameter, which also must be an integer and a power-of-two, determines the number of samples
included in (and thus the duration of) each analysis frame (or "window"). Often, this argument has a
default value equal to theFFT parameter (usually 1024), or else to twice the FFT value. If the sampling
rate of the source soundfile is 44.1k and the frame size is set to 1024, each analysis frame will average the
amplitudes and frequencies of all spectral components detected over a period of about 23 milliseconds
(1024/44100 = .0232).If we increase the window size to 2048 samples, each analysis frame will encom-
pass about 46 milliseconds of the source sound, which is adequate for many sustained sounds with ampli-
tude, pitch and spectral envelopes that evolve rather slowly. For strongly pitched harmonic source sounds
(especially low pitched sources), window sizes 2048, 4096, or else one power-of-two larger than the FFT
size, sometimes yields better frequency resolution than 1024 — if the analysis program allows such values.

However, with phase vocoderalgorithms there generally is a trade-off between frequency resolution
and temporal resolution. HighFFT values and (to a somewhat lesser degree) high andFr ame/Windowsize
values generally produce better frequency (and thus timbral) resolution, but poorer temporal resolution,
which may cause smearing or unwanted "reverberation" or "flanging." The values you choose forFFT and
Windowsize will be determined in part, therefore, by whether you intend to be transpose the pitch of the
sound, or to alter its duration.If we wish to stretch or shrink the duration of a source sound, but not change
its pitch, lower FFT andW values, such as 512, may produce better results.If we will be performing both
pitch transposition and temporal modification during resynthesis, we may need to try out differentFFT and
frame size values before finding the best compromise.

(3) Fr ame offset:
Each analysis frame is static, averaging the spectral content and amplitude over a duration determined by
the window size. If the analysis frames analyzed successive, non-overlapping segments of the source sound,
resynthesis likely would result in discontinuities, glitches and loss in audio quality. To correct for this,
phase vocoder (and, also,smsand lpc) analysis algorithms overlap the frames, so that each frame shares
many samples both with the preceding frame and with the following frame. A frame offset (sometimes
calleddecimation) value determines the number of samples between adjacent frames, and thus, in combina-
tion with the frame size/windowvalue, the amount by which the frames overlap. Of the phase vocoder
applications surveyed here, onlymixviewsrequires aframe offsetvalue.

Resynthesis parameters

Tw o resynthesis parameters are included in almost all phase vocoder resynthesis programs:
(1) Some method to specify changes in duration (time warping)
and
(2) Some method by which to specify pitch transpositions

Pitch transpositions often are specified by means of aFr equency Multiplierparameter, whose argument is a
multiplier for all of the frequency components detected in the analysis.Values of 0 and 1 typically have no
effect. A value of .5 will transpose all of the frequency components within the source sound down an
octave without affecting the duration. A value of 2 will raise the pitch of the soundfile an octave, and a
value of 1.5 will shift the pitch up a perfect fifth. (Consult the online ECMC helpfilepitchratios for other
pitch interval ratios.) However, pitch shifts also will result in a corresponding shift in formants, which prob-
ably will not be noticeable in idiophonic sounds, but will be all too apparent (the so-called "munchkin" or
"sick cow" effect) when sounds with strong formants (such as vocal and string tones) are transposed up or
down by more than a minor third or so.

Time warping is specified in various ways in different program.The PVCprograms include a time expan-
sion/contraction factorparameter. By contrast,mixviews andCsoundsimply require the user to specify an
output duration for the resynthesis soundfile.If the output duration is less than the duration of the analysis,
time compression results. (Each analysis frame is used for a shorter resynthesis duration than in the original
sound.) Whenthe output duration exceeds that of the analysis, time expansion results. (The reading of the
analysis frames is "slowed down.") Althoughthis may seem simple, it can cause problems when significant
compression or expansion (by a factor of 4 or greater) are performed, but theFr ame (window) sizeand

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 5

9.1 Phase vocoder procedures

Fr ame offset (decimation) analysis parameters were not optimized for this much compression or expansion.

In addition to time warping and pitch shifting, the two most basic and common types of sound modi-
fication procedures applied during resynthesis, some phase vocoder programs — notably those in thePVC
package — provide many other types of resynthesis modification possibilities that are controlled by addi-
tional parameters.

Simple soundfile examples

In thesflib/xdirectories of our SGI and Linux systems you can find a soundfile calledshortspeech, a
fragment from the beginning of the beloved soundfilevoicetest. A phase vocoder analysis ofshortspeech
was used to create eight illustrative resynthesized soundfiles, also located in thesflib/x directory, named
phasevoc.1 through phasevoc.8. These eight soundfiles originally were created with a (now obsolete)
NeXT phase vocoder applicationPVC.app. Howev er, since these are fairly rudimentary examples of typical
phase vocoder sound modification procedures, these soundfile examples could be created easily enough
with Ceres, PVC mixviewsor Csoundas well.

phasevoc1: straight resynthesis (should sound identical to the original)
Pitch shifting only:

phasevoc2: pitch is lowered a perfect fourth (5 semitones)
phasevoc3 : pitch is lowered an octave
phasevoc4: pitch is raised a perfect fourth (5 semitones)
phasevoc5: pitch is raised an octave

Time warping only :
phasevoc6: time compression by a factor of 4 (the output duration is 1/4 of the input duration, anbd
ev ents happen four times as quickly; each 256 input analysis frames are used to create 64 output
resynthesis frames)
phasevoc7 : time expansion by a factor of 8 (the output duration is 8 times the input duration; each
256 input analysis frames are used to create 2048 output resynthesis frames)

Time warping AND pitch shifting :
phasevoc8: time expansion by a factor of 1.5 (64 analuysis frames are used to create 96 resynthesis
frames) and the pitch is raised by one semitone

9.1.1. UsingCERES

Ceresis agraphically-based phase vocoder analysis and resynthesis application originally written for
SGI systems by Oyvind Hammer (who also wrote the SGImix application) and subsequently ported to
Linux by several programmers.Hardcopy documentation is available within theSGI DOCsand Linux
DOCsbinders in rooms 52 and 53, and you should consult this documentation before and while using the
application. A simplified tutorial summary is presented here. Another usage summary is provided in Dave
Phillips’ Linux Music & Soundtext.

Cerescreates an analysis in RAM for immediate resynthesis, and provides no means to save the anal-
ysis data to a disk file. In addition, this does limit the size of soundfiles that can be analyzed.However, on
all of our SGI and Linux systems (and especially on Linux systemsmadkingandfirebird, which currently
have 512 MB of RAM, this rarely is much of a limitation.The application provides only one user-settable
analysis parameter: the number ofFFT filters to be used in all analyses you create after opening the pro-
gram. The default value is 1024.

To start Cereswith this default FFT value, simply typeceres in a shell window. Unless you append
an ampersand to this command line,Cereswill tie up this shell window for as long as it runs.
To set theFFT value to some other power-of-two number, such as 2048, type

ceres 2048
If you wish to change this value, you must quit the program and reopen it with a new argument. Theuser
cannot adjust theFr ame (window) sizeany other analysis parameter values, all of which are fixed.
The program will open with a blank window and menus forFile, Transform, Export(rarely used) andset-
tingsnear the top, just under the titlebar.

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 6

9.1.1 Phase vocoder procedures : CERES

Tw o resynthesis modes are available: a faster but lower quality mode (the default) and a slower but
better quality mode. Almost always, you will want to change immediately to the higher quality mode:

• Under theSettingsmenu, click onResynthesis. Then, in the new window that opens, check the
Additive Synthesisbox and click onOK

You also may wish to change the default gray display to something more colorful:
• Again under theSettingsmenu, selectDisplay, then change the default Grey (sic) colors default
either toHot or Coldcolors.

To select a soundfile for analysis, click onFile, then onLoad & Analyze. In the selection window
that opens, select or type in a soundfile and then click onOK or tap a carriage return. Stereo input sound-
files can be used, but the resynthesis output will be mono.

The analysis may take some time. When it is completed, a time varying display of the frequencies within
the sound will be displayed.

Generally, it is best to perform straight resynthesis (no modifications) first to test the quality of the analysis.
To do this, selectSynth & Saveunder theFile menu. In the "dialog box" that opens, type in a name for the
output (resynthesized) soundfile and click onOK or tap a carriage return. When resynthesis is completed,
play this test soundfile. If it sounds good, you can proceed to create one or more additional resynthesis
soundfiles, this time with modifications. If the result is not good, your only recourse (other than quitting the
program and reopening it with anotherFFT value) is to reduce the number of frequency components used
in resynthesis. To do this, click on theTr ansformmenu, then onSieve, then set theNumber of harmonics
value to some (power-of-two) number less than theFFT value, then click onOK , and then redo the resyn-
thesis.

Modifications

To perform time warping during resynthesis, click on theSettingsmenu, then onResynthesisand, in
the box that opens, set aTime stretch factor (greater than 1. for time expansion, less than 1. to compress the
duration).

All other available resynthesis modifications, which affect either pitch or timbre, are accessed under the
Tr ansformmenu.

For pitch transposition,selectPitch shift and, in the box that opens, set aTr ansposition factor("fre-
quency multiplier") greater than or less than 1. (Consult the helpfilepitchratios in a shell window for
equal tempered intervallic ratios.)
To introduce a continuousglissando,also include a value in theMultiplication per secondbox, again
using thepitchratios file as a guide if necessary. If we place a value of 1.059 in this box, the pitch
will ascend by one semitone (a frequency ratio of 1:1.059) during each second of the output sound-
file.
Checking theControl functionbox and setting aStatic frequencycan produce interesting effects, in
which all of the frequency components either diverge from, or converge on, this fixed frequency.

After setting thePitch shift parameters, and any other Tr ansformoptions, as you wish, and closing
the boxes for these options, again selectSynth & Saveunder theFile menu to perform resynthesis.

Although theFile menu also includes aPlay option, the soundfiles available for playing will not include any new, resynthe-

sized soundfiles you create withCeres. You must play your output soundfiles from a shell window or some other application.

After experimenting with the time warping and pitch transposition options provided byCeres, you
also may wish to explore some of the timbral modification options available under theTr ansformmenu, and
discussed (briefly) within the hardcopy Ceresdocumentation:

Sieve (which, as noted earlier, reduces the number of FFT frequencies used in resynthesis) will sim-
plify a timbral spectrum, especially when small values (less than 20) are specified.With asievevalue
of 10,cereswill completely eliminate all but the ten strongest (highest amplitude) frequencies within
the spectrum.An additional option enables us to change this value exponentially over time, so that
the spectrum either becomes gradually less complex or more complex ("richer").
Spectrum shiftadds a fixed positive or neg ative number to each frequency component. Thisfrequency
shifting "detunes" the timbre (altering the ratios between its frequencies, and usually making these
ratios more complex). Note that the efffect is quite different from pitch transposition, which preserves
theratiosbetween the frequency components of the spectrum.

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 7

9.1.1 Phase vocoder procedures : CERES

Filter applies aband reject filter to the analysis, filtering out a contiguous portion of the original
spectrum.
Averagesmooths out time varying changes in the frequency components, averaging the frequency of
each component over the full duration of the output soundfile. In this manner, we could change nor-
mal speech inflections into a monotone.
To useMove to pitch grid , first click on theSettingsmenu and selectGrid scale, and set this value to
Major, Minor, Pentatonicor Chromatic. Then, in theMove to pitch grid, select a probability between
0 (no change in the original frequencies) and 1 (maximum change).If this parameter is set to1, all
frequency components within the resynthesized soundfile will be shifted so that the resulting sound
outlines a major or minor chord, or a pentatonic or chromatic scale.

☞ Important note: If you create a series of resynthesis soundfiles in succession,Ceresgenerally will
retain the previous resynthesis values while adding changes you make. Thus, if you apply a pitch shift, and
then, in your next resynthesis, edit theSpectrum shiftparameter, the precedingPitch shift value likely will
be retained. This may or may not be what you intend. When in doubt, check through the various resynthesis
parameter settings under theTr ansformmenu, and also the current setting of theTime stretch factor, before
launching a resynthesis.

9.1.2. Usingthe PVC programs at Eastman

PVC is a collection of excellent phase vocoder programs (currently the most extensive and powerful
phase vocoder programs available on the ECMC systems) written by Paul Koonce. Documentation inhtml
format is available online through a link in theonlinedocspage of the ECMC web site (read the ECMC ver-
sion rather than Paul Koonce’s original version). Thisdocument, also included in the hardcopy SGI DOCS
andLINUX DOCsbinders in the studios, has been edited by Allan Schindler to reflect ECMC usage, and
should be your principal starting point and reference source for work with thePVCprograms.

To simplify usage of many (but by no means all) of thePVC programs described in the html documenta-
tion, I have created local scripts, with the routine name followed by the extension.tp, ("template") based
upon models provided by Koonce, that can be used to run these programs. To obtain a list of currently
available ECMC templates for PVC programs, type

pvc.tp
To obtain a summary on how to use one of these template scripts, type the script name with no arguments.
For example, typing

plainpv.tp
will display a summary of how to use theplainpv.tp template. To see a genericplainpvscript without pro-
viding input and output soundfile arguments, type:

plainpv.tp -

The PVC programs most frequently used by ECMC users areplainpv, pvanalysisand twarp. How-
ev er, you may discover that one of the other programs is ideally suited to a particular compositional appli-
cation.

There are some internal differences in how the PVC programs work on our SGI and Linux systems. For
example, on the SGI systems, the input soundfile must be in AIFF format, and output soundfiles also are
ultimately written in AIFF format, but (for rather complicated reasons) internal processing is done in
NeXT/Sun format. By contrast, on the ECMC Linux systems, input and output soundfiles can be either in
AIFF or in WAVE format. Despite these under-the-hood differences, however, a script that you create to run
a PVC program on either an ECMC Linux or SGI system will produce exactly the same result when run on
any of our other systems.

In addition to these.tp script templates, I have created example script files for many (but, again, not for all)
of thePVCprograms. To obtain a listing of these example files, type

pvcex
To display one or more of these example PVC script files through the paging program "less," type:

pvcex filename(s)
To capture one or more of these files, type:

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 8

9.1.2 Phase vocoder procedures :PVC

getpvcex filename(s) > filename
Hardcopy of all of these example files is available in theECMC PVC Examplesbinder in the studios.

Soundfiles in thesflib/xdirectory exist for all of these examples except for a few that do not create sound-
files, but instead create an analysis file or some other type of file.

To learn how to useplainpv, the most basic program in the PVC package, or any other PVC program for
which an ECMC.tp script template exists, I recommend the following steps:

(1) Read a portion of the online or hardcopy HTML documentation onPVCand find a program you want to
try.
(2) Find out if an ECMC script exists for the program by typing

pvc.tp
If an ECMC script does exist:
(3) Find out whether one or more ECMC example files exist for the program by typing

pvcex
and note the names of example files for the program.In the case ofplainpv, there are several examples, and
we probably would begin with exampleplainpv1
(4) Look at one of the example files. To see exampleplainpv1,for example, type

pvcex plainpv1
or else consult the printout of this file in theECMC PVC Examplesbinder. While studying this example,
listen to the compiled soundfile in thesflib/xdirectory that was created by this example file:

psfl plainpv1
(5) Look at, and listen to, other examples created by the program, such asplainpv2andplainpv3
(6) When you are ready to use the program yourself, obtain a template file for the program. For a usage
summary of how to use an ECMC.tp script, type the script name with no arguments:

plainpv.tp
Then type

plainpv.tp insoundoutsound
and, if everything looks okay,

!! > scriptfile

or else simply
plainpv.tp insoundoutsound > scriptfile

to create a script file with analysis and resynthesis parameters that you can edit and then use to runplainpv.
(7) Next open this script file withvi or some other text editor, changing some of the default parameter val-
ues within the top half of the file to meet your resynthesis goals. Do not change anything within the bottom
half of the file (after the "OFFICE USE ONLY" l ine except at the very end of the script, where you can
remove any temporary gen function files you have created. Thepound sign# serves as the comment sym-
bol for all PVCscripts, and all characters on a line that follow this symbol are ignored by thePVCprogram.
(8) When your script file is ready, run the program with the command

sh filename
(Note thatPVC scripts must be run by a Bourne shell, with thesh command. The Bourne shell, the oldest
type of Unix shell, differs in some ways from thecshell [csh] with which you probably are more familiar.)
(9) When the job is completed, play the resulting soundfile. If you aren’t completely happy with the result,
edit the script file again and run it again.

Phase vocoder jobs sometimes can take a long time to run. You can suspend any PVC job in process at any
time by typing ˆz (control z). However, on our SGI systems, the partially compiled output soundfile will be
in NeXT, not AIFF format, and will have the temporary namepvcout. Type

p pvcout
to play these partially completed soundfile. Resume compilation by typing% or fg. To kill the job, typeˆc
after resumption.On the Linux systems, you can suspend compilation to play a partially compiled sound-
file in the same manner; however, the partially compiled soundfile will have the name you have provided
(rather thanpvcout), and will be in WAVE format.

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 9

9.1.2 Phase vocoder procedures :PVC

For advanced and adventurous ECMC users: If you want to try to use a program, such asringfilter, for
which I have not created an ECMC.tp script, you can find Paul Koonce’s S.program_namescripts in the
directory

/usr/local/soundapps/PVC/SCRIPTS.
However, these scripts will not work out-of-the-box. For one thing, they require NeXT format input sound-
files, and for another, they will not place you in your soundfile directory.

Many of the parameter values in thePVC programs can be controlled by means of time varying function
tables created withCmusic gen routinesthat are bundled with thePVCdistribution. TheseCmusic gen rou-
tinesare similar in many respects toCsound gen routines, but there are some important differences as well,
as discussed and illustrated at length within the ECMC version of the HTMLPVC documentation. Addi-
tional information on thesegen routines, excerpted from F. Richard Moore’s text Elements of Computer
Music, first edition, is included as an appendix within the hardcopy ECMC PVC Examplesbinder.

9.1.3. Performing phase vocoder analysis and resynthesis with CSOUND

The Csounddistribution includes a standalone phase vocoder analysis program calledpvanal, and a
unit generator calledpvoc that can be included within an orchestra file instrument to read in analysis files
and perform resynthesis. At Eastman, the steps involved in this process include:

(1) Usepvanalto create an analysis file.
(2) Use the local utilitypvlink to create a softlink file, in your current working Unix directory, that
"points to" this analysis file. See the online or hardcopy manpage forpvlink for details on using this
simple script.
(3) Use either an orchestra file that includes Eastman Csound Library algorithmphavoc, or else an
instrument algorithm of your own design, to create a resynthesized soundfile.(Your own "instrument"

might be based upon the genericphavocalgorithm, but include modifications or extensions.)

A manpage forpvanalis available online, and in hardcopy both within theCsoundmanual itself and
in the SGI DOCsand LINUX DOCsbinders. For a usage summary of the program, type the command
name with no arguments. The summary will look like this:

Usage: pvanal [-n<frmsiz>] [-w<windfact> | -h<hopsize>] [-g | -G<latch>]
[-v | -V txtfile] inputSoundfile outputFFTfile

This is repulsive, but there is good news: The program is fairly robust. In most cases the flag argument
default values (some of which depend upon the sampling rate) work adequately, and the simple command

pvanal InputSoundfile OutputAnalysisfile
often is sufficient to produce a usable analysis. If not, you can try tinkering with the-n argument and, if still
unsatisfied, with either the-w or the-h argument.

• As discussed earlier, the -n ("frame size") argument determines the number of samples analyzed within each analysis frame.

With 44.1k soundfiles, an argument of 1024 (the maximum allowed, and also the default) generally works well, although there

are occasions when some of us wish we could raise this value.

• The-h ("hopsize") argument corresponds to theFr ame offsetparameter discussed earlier.

• Alternatively, in place of a-h value, it is more common tospecify a-w ("window overlap") factor, which has a default value

of 4. This specifies that the-h ("hopsize," or "frame offset") value equals the-n "window size" divided by 4. If-n is set to

1024, the "hopsize" value would be 256.The-w argument should not exceed 8 (frame sizedivided by 8).

pvanaland thephavocLibrary algorithm do not provide the abundant modification possibilities of
such applications asCeresor mixviews. With pvanal, one

• cannot adjust the number ofFFT filters, an unfortunate limitation;
• one must analyze an entire input soundfile (it is not possible to analyze only a portion of the sound);
and
• the resulting analysis data currently cannot be edited by simple means

Despite these limitations, if you want to create rhythms, melodies, complex textures or simply a lot of out-
put notes from one or more phase vocoder analysis files, Csound’s ability to resynthesize any number of
simultaneous or successive output notes in a single pass, with user control over the relative amplitudes and

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 10

9.1.3 Phase vocoder procedures :Csound

other phrasing characteristics of these notes, can be invaluable. Thescore file that producedsflib/xexample
soundfilephavoc22, for example, creates 22 output notes. One recoils at the tedium that would be involved
in creating each of these resynthesis notes one at a time with one of our other phase vocoder programs, and
then mixing them all together.

For usage information on thephavocalgorithm, along with a score template and example scores,
consult theEastman Csound Library binder. A score template is obtained in the usual fashion:

getsc phavoc >filename
Advanced users will find some recently developed extensions to Csound’s basic phase vocoder resources.
pvaddcan be used to synthesize only a single frequency component, or groups of selected frequency com-
ponents, from an analysis file, "filtering out" all other frequencies. Several pvadd opcodes could be
employed within an instrument.pvcross and pvinterp provide some basic cross synthesis possibilities
between two source sounds.pvcrossmaps applies the time varying amplitude values for each partial from
one analysis file to the frequency values derived from a second analysis file.pvinterp can be used to
"morph" between two sounds.vpvocenables one to apply time varying alterationsto the amplitudes of the
frequency components of a sound.

9.1.4. UsingMAMMUT

mammutis an offbeat, phase-vocoder based SGI application also written by Oyvind Hammer and
subsequently ported to Linux by other programmers.mammutperforms an FFT analysis of an input sound-
file in a single window rather than in successive framesa, and then uses this "averaged" analysis data to per-
form various types of transformations on the sound.As a result of this unorthodox approach, the output
resynthesis often will sound very different from the original sound, and generally will not follow the origi-
nal spectral evolution. The same parameter values applied to two sound sources may produce startling dif-
ferent outputs.

Some ECMC users have foundmammutto be a highly intriguing application that produces results
that could not easily be obtained with any other DSP program.Other users find the application simply
goofy. Procedures for running the application are provided in the ECMChelpfile mammut, and in the
SGI DOCsand LINUX DOCsbinders.

9.1.5. UsingMIXVIEWS

mixviews is a comprehensive SGI and Linux application that allows us to perform various types of
soundfile editing, analysis, simple mixing (such as cross fading between two soundfiles) and filtering opera-
tions. Inaddition,mixviews provides subroutines for performing phase vocoder analysis and resynthesis,
and alsolpc analysis and resynthesis in separate operations.Like the dap andsndapplications,mixviews
can be used instead of the bare-boned (but easy-to-use) SGIsoundeditorapplication for editing soundfiles,
and also to apply various DSP "effects" to these soundfiles (something that cannot be done withsoundedi-
tor). Here at the ECMC, however, mixviews is used most frequently to create linear prediction analysis files
for resynthesis with Csound.

Hardcopy documentation formixviews is available in theSGI DOCsdocument in the studio. How-
ev er, this documentation is more useful as a reference by users who already understand the basic operation
of the program than as a tutorial introduction. No online HTMLHelp is available within the application.

Although powerful, themixviews program can at times be awkward to use.Each major signal pro-
cessing operation, such as performing a phase vocoder analysis, opens up a new window ("view") that dis-
plays the data that results from this operation. This data is stored in RAM rather than written to a file, until
one explicitly performs aSaveoperation in this window. The GUI interface does not follow some standard
X-windows conventions. For example, you cannot use the right mouse button to open a hidden menu and
"pop" this window to the top of the stack. Rather, the window can only be selected by clicking on its title
bar. With many windows ("views") open simultaneously, the title bar for the window you want to activate
often will be hidden, requiring that you miniaturize other windows (by clicking in the boxed small dot near
the right edge of the titlebar) or else move them to the corners of the monitor display, in order to access the
desired window.

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 11

9.1.5 Usingmi views

To open themixviews application, typemxv (short for "M iXV iews") in a shell window. This will
open a blanktmp ("temporary") window with various menu choices under the titlebar, and place you in
your home soundfile ($SFDIR) directory.

To open a soundfile (or some other type of file, such as a phase vocoder orlpc analysis file) for edit-
ing or use, click on theFile menu and then selectOpen. In the Openselection box that appears, select or
type in the name (and, if necessary, the directory) of the soundfile or analysis file to be opened and tap a
carriage return, or else click onconfirm. Awindow will open displaying an amplitude wav eform (or some
other type of data display) for the selected file.If you have opened a soundfile, and wish to play it, select
Play under theSoundmenu. Selecting only a portion of a soundfile for playing, analysis or editing cannot
be done with the customary mouse dragging technique. Rather:

☞ To set abeginning "edit" point for a selection, click in the wav eform display with theleft mouse
button;
☞ To select anendpoint for the section, click on the wav eform display with themiddlemouse but-
ton;
☞ To select the entire soundfile ("select all"), click anywhere within the wav eform display with the
right mouse button.

Soundfiles created (or else edited and then saved) with mixviews are saved in AIFC rather thanAIFF for-
mat.

When you are done usingmixviewsyou may have sev eral large and miniaturized windows still open.
Even if you selectExit or Quit from one of these windows, each open window must be closed, one by one,
and for each window that contains unsaved data, you will be relentlessly interrogated as to whether or not
you wish to save this data.If you are absolutely CERTAIN that you have sav ed everything that you want to
keep, you can simplify this repetitive process by returning to the shell window from which you launched
mixviewsand typing acontrol c. This will "pull the plug" onmixviews, aborting the program and closing all
of its open windows in a single step.

9.1.6. Usingmixviews to perform phase vocoder analysis and resynthesis

[Most of you can skip this subsection on usingmixviews to perform phase vocoder analysis and resynthesis.]

Creating a phase vocoderanalysiswith mixviews

To create a phase vocoder analysis of a soundfile:
(1) Make sure that a window for the source soundfile is open, and that you have selected the portion of this
soundfile to be analyzed. This region must be highlighted.
(2) Under theAnalysismenu, selectPhase vocoder analysis.
In the window that opens, set the desired analysis values for the phase vocoder analysis.

• TheFr ame size(Window size) argument, discussed earlier, determines the number of samples to be ana-
lyzed per frame. A suggested starting point value is1024.
• The Fr ame offsetandFr ame rate arguments generally can be left at0. mixviews will then use default
values for these arguments.
• TheFFT sizeargument, as usual, determines the number of bandpass filters to be created.The default
value of256generally is too low. A value of1024often works well.
Reminder: Increasing theFFT value to 2048or higher yields better spectal resolution but poorer temporal resolution. Conversely, a

value of 512 or 256 yields better temporal resolution, but poorer spectral resolution.

• If you will be performing time warping in your resynthesis, it usually is best to set aTime scalingvalue
in this window, and use a corresponding time scaling value in resynthesis. For example, aTime scaling
argument of4 will optimize the analysis for time stretching a resynthesis by a factor of 4, so that the dura-
tion of a resynthesized soundfile will be four times as long as the duration of the sound that has been ana-
lyzed.
Note, however, that the resulting "custom" analysis file, optimized for a particular time expansion factor, probably will not yield good

resynthesis results if used for timecompression.

(3) After setting these parameters, click onConfirmor tap a carriage return. When the analysis is done, a new
window will open displaying this analysis data. You may not find this display all that useful. Note that the analy-
sis data is in RAM, and is not saved to a file until you perform aSaveoperation in this window.

At any time, now or in the future when you open this analysis file, you can obtain information on the analysis parame-
ters by selectingFile infounder theFile menu.

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 12

9.1.6 Phase vocoder procedures :MIXVIEWS

Advanced users should note that unlike many other phase vocoder programs,mixviews allows one to edit and
alter the phase vocoder analysis data displayed in a window by means of various operations available under theEdit,
ModifyandPvocmenus. These modification procedures sometimes can be useful in transforming sounds.

To perform phase vocoderresynthesiswith mixviews:
(1) If a window for the phase vocoder analysis file to be used is not already open, open this analysis file, which
will load the data into RAM.Then select how much of the analysis is to be used in resynthesis.To select (high-
light) the entire file, click anywhere in the analysis display with theright mouse button; otherwise, use the left
and middle mouse buttons to select beginning and end points within the analysis file.
(2) Within the analysis file window, click on File, then onNew Typeand then onSound File.
(3) In the "dialog box" that opens, set the soundfile header values and a name for the resynthesis soundfile.
(4) A blank new soundfilewindow will open for the resynthesis soundfile data. In this window, click on Sound,
then selectSynthesis, thenPhase vocoder resynthesis.
(5) Yet another "dialog box" will open, in which you must set the resynthesis parameters, including the desired
outputduration. This argument defaults toone second, and must almost always be changed.

• If you donot wish to perform time warping, yourDuration argument should match the duration of the
phase vocoder analysis file.
• If youdowish to perform time warping, set theDurationargument to the desired output duration.

To launch the resynthesis, tap a carriage return, or click onConfirm
(6) When the resynthesis has been completed an amplitude wav eform display will appear and you can play the
resynthesized sound. If you like it, you can perform aSaveoperation in the usual manner (selectSaveunder the
File menu).

9.2. UsingSMS on the ECMC Linux systems
Spectral Modeling Synthesisis a powerful analysis/synthesis system created by Xavier Serra and

other programmers that has been under development for the better part of a decade.Originally, smswas
implemented on SGI systems, but most of the more recent development has been on Linux andWindows
platforms. However, newer versions of these programs have tended to be buggy, as you will see. Currently,
yet another iteration of SMS is in development — an open source, cross platform C++ library that should
become available in 2002 or 2203, and some day may supercede the Linux version described in these
pages.

In the ECMC studios we are running a five year old (but still fully functional and robust) package of
SMS programs and related ECMC utilities on SGI systemarcana. We also a running a recent version
(2.6.3) ofsms, installed in June of 2002, on our Linux systems. These SGI and Linux versions of SMS are
completely incompatible; the programs and their parameters differ substantially, and analysis files created
on one of these platforms cannot be used on the other.

Even though this can cause some initial confusion, we are maintaining the older SGI version of SMS
on arcana for the benefit of old timers already familiar with it, and because it includes some significant
resources that do not work correctly, or as well, in the newer Linux version. However, new users should
learn the Linux version, and it is highly unlikely that you will want to take the (considerable) time neces-
sary to master the SGI version as well.All of the documentation in thisUsers’ Guide section, in the
LINUX DOCsbinder and in the online Linuxmanpages and Linuxecmchelpfiles refers to the Linux ver-
sion of SMS. Legacy documentation on the SGI version is maintained onarcana and in theSGI DOCs
binder. Do all of your work with SMS on the Linux systems.This includes viewing man pages, and
viewing and listening to examples. The SMS documentation and example files onarcanarefer to the SGI
version of SMS, not to the Linux version.

Overview:

smsis based on a spectral model in which sounds are made up of two components: apitched (also
called "deterministic") component, and anoise(also called "residual" or "stochastic") component.When
analyzing a soundfile,smsfirst performs Fourier transform procedures to identify the harmonic or inhar-
monicpartials within the sound.Unlike phase vocoder programs, however, smsalso attempts to "connects
the dots," tracking each partial "trajectory" from frame to frame as a series of sinusoids that change in fre-
quency and amplitude over time. Theremaining portion of the sound, called theresidual, which could not
be modeled by the frame-to-frame evolution of these sinusoids, is then analyzed as filtered noise.

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 13

9.2smsprograms

smsanalysis/resynthesis is basically a two-step process:

1) Createan analysis of a soundfile that models the pitch, amplitude and spectral evolution of the sound
over time. Thisanalysis is written to a (large) file stored on thesnddisk (along with your soundfiles),
but it is not playable.

2) Usethis analysis file to synthesize a new soundfile.

These two basic steps, however, can be broken down into a series of smaller tasks.SMS provides more
than fifty parameters for tailoring an analysis to the particular pitched, spectral and amplitude evolution of
the source sound, and even more options for modifying this source sound during resynthesis. Because so
many variable options are available during both of these operations, these argument values are stored as
parameters within ASCII input files during both the analysis and synthesis stages.

Thus, several files are created when we useSMS:
(1) anASCII analysis parameterfile, which sets all of the values to be used to create an analysis
(2) a binary dataanalysis file
(3) generally a simpletest soundfileis then created in order to assess how successfully the analysis
has captured (modeled) the key components of the source sound
(4) anASCII synthesis parameterfile, which sets all of the values to be used in re-synthesizing the
sound with modifications
(5) thesynthesis soundfile

The executablesmsprogram has two modes that can be used to create both analysis files and synthesis
soundfiles:

sms analysis analysis_parameter_file(creates an analysis file)

and
sms synthesis synthesis_parameter_file(creates a synthesis soundfile)

However, I recommend that you never run smsthis way. Thesmsparser is fairly primitive, and the program
often aborts when it encounters even trivial syntactical errors. Also, thesmsbinary has some bugs, and
sometimes has trouble locating files. For these reasons (and, more mundanely, beause I have trouble
spelling both "analysis" and "synthesis"), I have created five local scripts to simplify runningsmson the
ECMC Linux systems:

(1) smsanaltp: provides a template for creating an ASCII analysis parameter file
(2) smsanal: runssmsin analysis mode to create an analysis file
(3) smstest: used to test the quality of an analysis file
(4) smsynthtp: provides a template for creating an ASCII synthesis parameter file
(5) smssynth: runssmsin synthesis mode to create a soundfile

To sav eyourself a lot of aggravation and head scratching, you always should usesmsanalandsmssynth,
rather than thesmscommand, to create analysis and resynthesis files. The entire procedure is summarized
in the following pages.All of the programs associated withsmsexcept a GUI calledsmsrtsynth, which you
may or may not choose to use, are run from a shell window. Typing any of the commands above with no
arguments will display a usage summary, andmanpages are available for each of these five utilities.

9.2.1. SMSanalysis

Preparing analysis parameter files: smsanaltp

smsanaltpprovides a template for creating an input analysis parameter file.The template includes
analysis parameters filled in with default values. Usersthen can edit these default values with a text editor,
changing them as needed in order to obtain a better analysis.The syntax for obtaining a template is:

smsanaltp [flagoption] inputsoundfile [outputanalysisfile] [> filename]

The inputsoundfileargument is the name of amonophonic, 44.1 k AIFF or WAV format soundfile.The
filename extensions.aif, .aiff and.wavcan be omitted if you wish. For soundfiles in yourSFDIRor in any
of thesflib directories, you need type only the name of the soundfile, not its full path. For input soundfiles
in directories that branch from your$SFDIR, include the subdirectory name(s).

The optionaloutputanalysisfileargument is the name you wish to give to the outputsmsanalysis file.
If this argument is omitted, the analysis file will be namedtest.sms. I recommend that you include the file-
name extension.smswhen naming allsmsanalysis files.

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 14

9.2smsprograms

The optionalflag optiondetermines the type of template you will get. There are four variants:
(1) a short, uncommentedtemplate, the default version, is provided when no flag option is specified
immediately aftersmsanaltpon the command line.This template includes only those analysis
parameters most frequently changed from default values (such as the name of the input soundfile, the
name of the outputsms analysisfile, and pitch detection parameters).

(2) a "verbose" (commented) "short" template, selected with a-v flag. Thistemplate includes the
same parameters as #1 above, but with usage comments for each parameter.

(3) anuncommented "long" template, selected with a-l flag, which includes practicallyall sms analy-
sisparameters filled in with default values.

(4) a commented ("verbose")" long" template, selected with either a-lv flag or with a-vl flag, identi-
cal to variant #3 above except that most of the parameters include usage comments.

Beginning users generally will want to selectcommentedtemplates, while advanced users may prefer less
cluttereduncommentedtemplates. Theshort templates generally will suffice when analyzing comparatively
simple sounds such as pitched string, wind and vocal tones. You can always add additional parameters to
the template if needed. by typing them in or by cutting-and-pasting them from another file or a shell win-
dow display. Long templates can be useful when analyzing acoustically more complex sounds such as idio-
phones and environmental sounds, where many of the default values may need to be altered.Consult the
smsanaltpmanual page for more detailed information.

Usage examples:
(1) smsanaltp bssn.a2

will display a short, uncommented template for analyzing thesflib/windsoundfilebssn.a2
(2) smsanaltp -vspinningsound spinningsound.sms > spinningsound.sms

will create a commented short template for analyzing your soundfilespinningsound(or spinningsound.wav,
spinningsound.aifor spinningsound.aiff) and will write this template into a file namedspinningsound.sms
in your current working Unix directory. The analysis file also will be namedspinningsound.sms. Giving a
common name to an analysis file, and to the parameter file used to create it, is a common practice that I rec-
ommend.

(3) smsanaltp -l Section2/3voices.wavSMS/3voices.sms >3voices.sms
will write a long uncommented template for analyzing the soundfile3voices.wavin your soundfile subdi-
rectorySection2into a parameter file namedvoices2.smsin your current working Unix directory. The anal-
ysis file that is specified in this parameter file will be3voices.smsin your soundfile subdirectorySMS.

See themanpage forsmsanaltpfor more details.

Becausesmsanalysis files can be very large, we always write them to thesnddisk, rather than to the
smaller Unix system disk. Parameter files, by contrast, are small and are written along with other ASCII
files in your/homedirectory or (better) in subdirectories that branch from yourhomefolder.

Let us follow the practice of creating an SMS analysis file for the/sflib/windsoundfileoboe.bf3. We
will use a verbose short template:

smsanaltp oboe.bf3 oboe.bf3.sms >smsoboetry1
When we open the parameter filesmsoboetry1we will see this:

// Include comments only at beginning of lines, NOT after analysis parameters
InputSoundFile /sflib/wind/oboe.bf3
OutputSmsFile /snd/allan/oboetry1
// ######## GENERAL PARAMETERS ###########################
// SineModel: 0 = no pitch analysis, 1 = harmonic, 2 = inharmonic; default=1

SineModel 1
// window type : 0 (least smooth) to 11 (smoothest); default = 8

WinType 8
// Frame rate of 344.532 is optimized for most 44.1k soundfiles

Fr ameRate 344.532
// BeginPos = skip time in % into input soundfile: range 0 (beginning) to 1. (end)

BeginPos 0

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 15

9.2smsprograms

// EndPos = end time in % to stop reading input soundfile: range 0to 1.
EndPos 1

// ######## FUNDAMENTAL PITCH (for harmonic sounds) ###################
// PitchDetection: 1 = yes, 0 = do not perform, use DefaultPitch as reference

PitchDetection 1
// lowest possible, highest possible & default fundamental:
// You almost always will want to change the 3 default values below

LowestPitch 40
DefaultPitch 75
HighestPitch 600
// ATTACK REANALYSIS parameters are useful for sounds with sharp attacks, like pizzicati
// AttackReanalysis : 1 = analyze attacks backwards 0 = analyze attacks forward

AttackReanalysis 0
// Next 3 parameters only used if AttackReanalysis is set to 1
// nAttackReanalysisFrames: numbers of frames to use in reanalyzing attack

nAttackReanalysisFrames 20
// AttackReanalysisLowPitchMargin and AttackReanalysisHighPitchMargin:
// multipliers for how far fundamental can deviate from DefaultPitch during atack

AttackReanalysisLowPitchMargin 0.95
AttackReanalysisHighPitchMargin 1.05

// ######### PARTIALS ##3
// Number of partials (sines) : 0 to 400 ; default=60

nSines 60
// Lowest frequency to search for in input sound: 0 to 22050 hertz

LowestFreq 20
// Highest frequency to search for in input sound: 0 to 22050 hertz

HighestFreq 11025
// ######RESIDUAL (noise component) : ###########
// ResModel : not documented; range 0 to 5; try another value if resynthesized
// noise component is bad

ResModel 4

Lines beginning with a double slash// are comments, and any line that includes this // symbol
ANWHERE on the line will not be seen by SMS. Thus, you cannot include comments after a parameter, like
this:

LowestPitch 210 //WRONG!
This line will be deleted, and theLowestPitch parameter will be set to its default value of 40.

A discussion of all SMS analysis parameters is available in the documentSMS Analysis Parameters,
available in theLINUX DOCsbinder and online on theDOCspage of the ECMC web site. Within this doc-
ument I have included some bracketed comments to note errors and omissions within the documentation.

If you wish, you can delete parameters with default values that you are sure you will not want to
change. However, do not delete theFr ameRatevalue of 344.532, which is necessary for 44.1k soundfiles
and which differs from the default used by the SMS binary.

The parameters are grouped into five units in the template:General, Fundamental Pitch, Attack
Reanalysis, Partials andresidual:

General analysis parameters

SineModel: generally set this to 1, the default, when analyzing most sounds, even speech. Setting
SineModelto 2 may be necessary with certain inharmonic sounds, but this will not offer as many synthesis
modification possibilities. Do not use a 0 or else there will be no pitch analysis, and there will be relatively
few synthesis modification possibilities.
WinType : the default value of8 usually works well, and this parameter is not frequently changed.
Always keep theFr ameRate 344.532line, as noted above.
BeginPos andEndPos respectively allow us to skip into a soundfile when performing the analysis, and to

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 16

9.2smsprograms

analyze only a portion of the soundfile.However, these values must be given as decimal percentages of the
total soundfile length, from 0 to 1., and not in seconds. Thus, for a soundfile with a 5 second duration, to
analyze only the portion of the soundfile from 1 second to 4 seconds, these values would be set to:

BeginPos .2
EndPos .8

Pitch tracking
If PitchDetection is set to1 the analysis will try to extract the time varing fundamental pitch of the sound.
If PitchDetection is set to0 no pitch analysis will be performed and you will not be able to transpose the
sound during resynthesis.
It is almost always a good idea to change theDefaultPitch to the perceived pitch of the sound. Use the
ecmchelpfile herz, or the ECMCmidinoteutility for help. This value also determines the window size, an
important parameter, especially for acoustically complex sounds. Usually theLowestPitch and Highest-
Pitch should be set respectively to about 80 % and120 % of theDefaultPitch value to allow for scoops,
vibrato and other pitch variations. Obviously a glissando may require a wider variance.

ATTA CK REANALYSIS
When theAttackReanalysisparameter is changed from its default 0 to1, the beginning of the soundfile will
be analyzed backwards. This can be very useful for idiophones (including stribg pizzicati and piano tones)
that begin with a noise burst before settling into more periodic vibration. By analyzing the noise burst back-
wards, beginning at a point where the pitch and timbral spectrum are more stable, a better analysis often is
obtained.
When theAttackReanalysisparameter is changed to 1 the other three indentedAttackReanalysisparameters
come into play. (They are ignored whenAttackReanalysisis 0.) nAttackReanalysisFrames determines the
number of opening frames that will be analyzed backwards. With the Fr ameRateof 344.532 frames per
second, settingnAttackReanalysisFramesto 115 or so will cause the first 1/3 second to be analyzed back-
wards. TheAttackReanalysisLowPitchMargin and AttackReanalysisHighPitchMargin are multipliers for
DefaultPitch values during the backwards analysis only, when the pitch deviation from the fundamental
often is much higher than during the steady state portion of the sound. You generally will want to increase
the default nAttackReanalysisFrames, AttackReanalysisLowPitchMargin and AttackReanalysisHighPitch-
Margin values.

Partial frequencies
The nSines parameter sets the number of partial frequencies that SMS will try to identify and track.
Hwever, these sinusoids include not only steady state partials, but also brief frequency trajectories that may
occur, especially during the note attack, and thus you should set this value higher than you expect —
approximately double the number of presumed partials.
The goal here is to enable SMS to include all of the pitched components of the source sound within its pitch
analysis, so that if the sound subsequently is transposed during re-synthesis, only the bow scrape, breath
noise and/or other completely unpitched elements of the source sound will not be transposed.If you set
nSinestoo low some of the weaker but still audible pitched components may be included in the residual and
when you transpose the sound you might get unwanted "harmnizing" (some of the original pitch will sur-
vive). If you set nSinestoo high, the pitched component may include glitches or other artifacts. Often,
hwoever, a reasonable ballpark value works just fine.
The LowestFreq andHighestFreq arguments, which often can be left at defaults, set the lowest possible
and highest possible frequencies that may occur in the source sound.

Residual

Often, theresidual is the weak spot in SMS analyses, and there are relatively few parameters that ou can
adjust to try to improve a poor residual analysis.The ResModelparameter, which has a range between 0
and 5 and a default value of 4, is not documented, and I have no idea what defines the five "models." Still,
if your pitch analysis is good, but the residual is poor, you might try changing this parameter.

Before changing the default analysis parameter values, it often is helpful to consider the overall acoustical
properties of the source sound.Some fundamental considerations include:

• Does the sound have a well-defined pitch that we need to capture within the analysis, or is it essen-
tially inharmonic, like a snare drum hit or waterfall?
• If the sound is pitched:

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 17

9.2smsprograms

☞ Is the spectrum essentially harmonic, as in most woodwind, brass and arco string tones? Or
is the perceived pitch actually a "strike tone" within an essentially inharmonic spectrum, as in
gong tones, temple blocks and almost all idiophonic sounds? Sometimes the answer to this
question requires some acoustical knowledge. With piano tones, for examples, the "harmonics"
become progressively sharper, and the tone begins (and often ends) with noise components
produced by the hammer and dampers.
☞ How stable is the pitch? Is there a wide vibrato (as in many sung tones)?Are there glis-
sandi, scoops, random pitch deviations or other types of pitch inflections?

• Does the sound begin with a sharp or "noisy" attack or articulation, like piano and pizzicato tones
and most idiophonic sounds? Such complex attacks can be the most difficult portion of a sound to
capture successfully in an analysis.
• Does the sound change rapidly over time in amplitude and/or timbre, like most idiophonic sounds,
or is there a "steady state" during most of the tone?

The /sflib/anal/smsdirectory contains SMS analyses of several sflib source sounds that can be used
for SMS synthesis. In addition, the analysis parameter files that created these analyses can be consulted for
illustrations of parameter settings for various types of sounds. To obtain a listing of these example parame-
ter files type:lssmsex
To view one or more of these analysis parameter files, type:getsmsex filename(s)

As luck would have it, one of the example analysis files is namedoboe.bf3.sms(the same soundfile we set
out to analyze above), and the example file looks like this:

InputSoundFile /sflib/wind/oboe.bf3
OutputSmsFile /sflib/anal/x/oboe.bf3.sms

Fr ameRate 344.532
LowestPitch 200
DefaultPitch 233
HighestPitch 270
nSines 80

These were the only parameters that had to be changed from default values in order to obtain a usable anal-
ysis of this oboe tone. But it’s not always this easy!

Creating an SMS analysis file : smsanal

Now that we have an analysis parameter file we are ready to creat the actual analysis file with
smsanal. Thesmsanalsyntax is

smsanal inputfile
where inputfile is the name of the analysis parameter file. The output ofsmsanalwill be an analysis file
with the name (and path) specified by theOutputSmsFile argument in our parameter file.

Actually, there is more to thesmsanalscript than meets the eye. It solves some bugs in the current
version of the SMS binary, as noted in thesmsanal manpage, but to do so it make temporary copies of both
the input soundfile and the analysis parameter file. If you abort ansmsanaljob these two scratch fileswill
be left on the disk, one in your $SFDIR and one in your current Unix directory.

While ansmsanaljob is running, or after it has completed, check to see if there are any error mes-
sages, and if so check your analysis parameter file for errors.

Running smstest to test the quality of an analysis file

Before we expend a lot of time and energy devising synthesis modifications with our analysis file, we
should run a quick test to see if the analysis is any good — whether it has adequately modeled both the
pitched and noise components of the source sound.smstestand smstestupare local utilities designed to
quickly test the quality ofsmsanalysis files. Using the analysis file as input, it attempts to make an exact
clone of the original source soundfile. If this straight resynthesis sounds almost indistinguishable from the
original source sound we can be fairly certain that the pitched and noise components of that sound have
been modeled adequately in the analysis. If we are not happy with the re-synthesis, we will need to make
one or more corrections in our analysis parameter file , run it throughsmsanalagain and hope for better
results.smstestupworks identically tosmstestexcept that it transposes the resynthesis up one semitone to
test pitch transposition of the analysis file.

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 18

9.2smsprograms

Thesmstestsyntax is simple:
smstest [flag option] inputsmsanalysisfile [outputsoundfile]
or
smstestup [flag option] inputsmsanalysisfile [outputsoundfile]

whereinputsmsanalysisfileis the name (and, if the analysis is not located in your$SFDIR, path) of thesms
analysis file to be tested. The optionaloutputsoundfileargument is the name of the output soundfile, which
should include a.wavextension (if your want a WAVE format output) or else a.aif or .aiff extension if you
want an AIFF format output. If you omit these extensions a.wavextension will be added by the script. If
you omit this argument entirely, the output soundfile will be namedsmstest.wav.

Three available flag options are available:
-1 : specifies that only the pitched sinuosidal component be resynthesized
-2 : specifies that only the residual noise component be resynthesized
-3 : specifies that both the pitched sinuosidal component and the residual noise component be resyn-
thesized

If none of these flag options is included, the default is the same as the-3 option: both the pitched sinuosidal
and the residual (noise) components of the source sound will be resynthesized.

Example command lines:(1) The command
smstest scoobeydoo.sms

will createoutput soundfilesmstest.wavusing both the pitched and residual data contained within the anal-
ysis filescoobeydoo.sms.

(2) smstest -2 /snd/allan/SMS/insects2.smsnoisetest
Result: Output soundfilenoisetest.wavis created, using only the noise component contained within the
analysis fileinsects2.smsin my soundfile subdirectorySMS.

For reasons discussed in themanpage forsmstest:
• Even if the default pitched-plus-residual test soundfile seems successful, it often is a good idea to
runsmstestwith the-2 flag as well to isolate only the residual component of the analysis.
• I recommend that in most cases you usesmstestuprather thansmstest.

9.2.2. SMSSynthesis

Once you do have a good analysis file,smsprovides many ways to modify the original sound.The
procedures for preparing and then running an SMS synthesis job are similar to the procedures for preparing
and running SMS analysis jobs.Because there are so many possible synthesis options, these options are
consolidated within an ASCIIsynthesis parameterfile. Generally this parameter file is created with the
ECMC scriptsmssynthtp. The default values provided by thesmssynthtptemplate will produce straight
resynthesis. Therefore we need to edit the template and change some of the default arguments in order to
produce the desired synthesis modifications. When the parameter file is ready, we feed it to the ECMC
script smssynthto create the synthesis soundfile. A GUI application calledsmsrtsynth, discussed later, can
sometimes be useful in testing sound modification possibilities in realtime.

Most of the bugs in SMS are in its synthesis resources. Unfortunately, a few of the most powerful
sound transformation resources of SMS synthesis do not work correctly, or at all, in the current Linux ver-
sion of the program. Even so, there are more than enough possibilities to keep you busy for a long time.
The basic types of synthesis transformations available with SMS include:

Most commmon sound modifications:
(1) Time expansion or contraction without altering the pitch
(2) Amplitude alterations in the pitched component, the residual component, or both
(3) Pitch alterations
(4) Alterations in the harmonic or inharmonic frequency spectrum (timbre)

Additional modification possibilities:

(5) "Harmonization" -- the creation of 2, 3 or 4 rhythmically synchronized output notes ("chords")
(6) What the SMS authors call "hybridization" -- various types of cross-synthesis employing interpo-
lations between two SMS analysis files
(7) Amplitude and frequency modulation

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 19

9.2smsprograms

(8) Enhancement -- adding new harmonic frequencies to a sound to brighten it. So far I have not
achieved good results with the SMSenhancementparameters.

Additionally, there are many parameters for (9)Attributes, which is never defined or explained clearly in
the SMS documentation, and for (10)Phase Alignment, another area that is poorly documented and with
which I have had little success.SMS also includes parameters for (12)mixingmultiple output notes begin-
ning at arbitrary times, but unfortunately these parameters currently do not work correctly. Finally, there
are a few miscellaneous (but sometimes important) parameters that do not fit any of the categories above.

Obtaining an SMS synthesis template : smssynthtp

The ECMCsmssynthtputility provides a template for creating a synthesis parameter file.The syntax is:
smssynthtp [flag options] inputanalysisfile [outputsoundfile][> filename]

whereinputanalysisfileis the name of the input sms analysis file andoutputsoundfileis the name of the out-
put synthesis soundfile, which should include a .wav, .aif or .aiff extension. If you do not supply anoutput-
soundfileargument the output soundfile name will be set totest.wav.

The optionalflag argumentsadd parameters for categories 5 (harmonization) through 8 (enhancement) in
the list above. Usage of theseflag argumentsis somewhat non-standard, and you definitely should read the
smssynthtp manpage to supplement the summary on that follow.

By default, with no flag arguments,smssynthtpprovides an uncommented "short" template contain-
ing only the more frequently used SMS synthesis parameters for categories 1 through 4 ("Most common
sound modifications") above. The flag options supplement this basic template with parameters for synthe-
sis mdification categories 5 through 9 above. These flag options begin with a+ rather than the usual-, and
include:

+v : averbosetemplate with comments is supplied
+h : harmonizationparameters are added
+x : hybridization(cross-synthesis) parameters are added
+m : amplitde and frequency modulationparameters are added
+e : enhancement(artificial harmonic) parameters are added

Example command lines:
(1) smssynthtp trp.a4.sms

Result: A basic uncommented template for creating a synthesis soundfile from your analysis filetrp.a4.sms
will be displayed.The name of the output soundfile file will be set totest.wav.

(2) smssynthtp +v/sflib/anal/sms/kantil.3.sms himetal.wav > sms.himetal1
Result: A commented ("verbose") basic template forsynthesizing a soundfile namedhimetal.wav, using
the public domain analysis file/sflib/anal/sms/kantil.3.sms, is written to a file namedsms.himetal1in your
current working Unix directory.

(3) smssynthtp +v+h +m SMS/myvoice.sms > smstest3-1
Result: A commented template that includes bothharmonization and modulaton parameters is written to a
file namedsmstest3-1. The input analysis file will bemyvoice.smsin your SMSsoundfile subdirectory, and
the output soundfile will be namedtest.wav.

(4) smssynthtp +v +x
Result: Only commented parameters for performing hybridization are displayed. There are no input or out-
put soundfiles, and none of the basic parameters is displayed.

Synthesis parameters

A complete summary listing of the many SMS synthesis parameter arguments, along with their
default values and ranges, is available in an HTML SMS Synthesis Parameters document available of the
DOCspage of the ECMC web site and in hardcopy within the LINUXDOCsbinder. I have added some
bracketed comments to this document to correct some errors and to include some ECMC annotations.You
should refer to this document while reading the summary guidelines that follow. See also the HTML pages
titled Descriptions of many of the analysis and synthesis parameters within the SMS Manualon thedocs
page of the ECMC web site.

If we type the command
smssynthtp +v/sflib/anal/sms/pn.bf2.sms sms.pianowarp.wav > pianowarp1

the resulting filepianowarp1will contain a commented basic template that looks like this:

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 20

9.2smsprograms

// Fn indicates a time varying function can be applied to the parameter
// Do not use blank lines. Put all comments at the very beginnings of lines.
InputSmsFile /sflib/anal/sms/pn.bf2.sms
OutputSoundFile sms.pianowarp.wav
// ######## GENERAL PARAMETERS ################
// SamplingRate: sms default is 22050; ECMC default =44100
SamplingRate 44100
// Type: 1 thru 7, def. 7, 1 = sine only, 2 = resid. only, 3 = sine + resid.
Type 3
// TimeStretch .0001 to 1000, def. 1 : time expansion or contraction multiplier
TimeStretch 1
// NoUnvoicedTimeStretching: if != 0, do not time warp unvoiced noise bursts (e.g. speech conso-
nants or the snap of a pizzicato)

NoUnvoicedTimeStretching 0
// PhaseAlign def. 1 ; reset to 0 or pitch transposition will not work
PhaseAlign 0
// ##### AMPLITUDE #####################
// Overall pitched & residual amplitude multiplier : 0 to 5, def. = 1
Amp 1
// AmpSine: Amp. multiplier for pitched component: 0 to 5, def. = 1
AmpSine 1
// Amp. multiplier for even harmonics including fundamental: 0 to 5, def. = 1

AmpSineEven 1
// Amp. multiplier for odd harmonics: 0 to 5, def. = 1

AmpSineOdd 1
// AmpSineList: h1 a1 h2 a2 etc. : h values = harmonic numbers & a values = amp. multipliers
// AmpSineList0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 8 1.
// AmpSpec: Amp. multiplier for residual (noise) component: 0 to 5, def. = 1
AmpSpec 1
// ResCombfilter : 0 (default) = do not use, 1 = apply comb filter

ResCombfilter 0
// ##### FREQUENCY ##
// FreqSine: multiplier for all partial frequencies, 0 to 5., def. =1
Fr eqSine 1
// FreqSineEven: multiplier for fundamental & even partials, 0 to 5., def. =1

Fr eqSineEven 1
// FreqSineOdd: multiplier for odd numbered partials, 0 to 5., def. =1

Fr eqSineOdd 1
// FreqSineStretch: -.99 to 5, def. = 0, multiplier for ratio of fund. & highest harmonic

Fr eqSineStretch 0
// FreqSineShift: 0 to 10000, def. = 0; hertz added to all partials

Fr eqSineShift 0
// SameSpectralEnv 0 = transpse formants with pitch, 1 = keep original formants
SameSpectralEnv 0
// VibratoWeight : 0 to 10, default = 1 : multiplier for vibrato depth

VibratoWeight 1

Here is a quick summary of how most of these parameters work:
General parameters :

Type : if set to 1 only the pitched component is synthesized; if set to 2 only the noise component is synthe-
sized; if set to 3 both the pitched and noise components are synthesized;(do not worry about options 4 through 7,

which require a soundfile with the noise component rather than the residual data within the analysis file)

TimeStretch : multiplier for duration; default = 1; if > 1. time stretching results; if < 1. time compression

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 21

9.2smsprograms

results
NoUnvoicedTimeStretching : if changed from the default 0 to 1, noise bursts (such as consonants in speech
are singing) are not altered in duration when time warping is in effect
PhaseAlign: an important and sometimes troublesome parameter; the template default is 0 (the original
phases of partials are not maintained); if you get garbage in synthesizing a sound, especially when transpos-
ing the pitch, try resettingPhaseAlignto 1; setting this parameter to 0 has generally worked better for me
than setting it to 1, but not always
Amp: amplitude multiplier for the entire signal (both pitched and noise components)
AmpSine: amplitude multiplier for only the pitched component
AmpSineEven: amplitude multiplier for the "even" harmonics, including the fundamental, which is consid-
ered harmonic number 0 here; most people would consider these to be the "odd harmonics"
AmpSineOdd: amplitude multiplier for "odd" harmonics only, but since SMS numbers the fundamental as
"harmonic number 0" rather than "harmonic number 1," most people would consider these to actually be
the "even" nubered harmonics
AmpSpec: amplitude multiplier for only the residual component
ResCombfilter: if changed from the default 0 to 1, the residual will be comb filtered; it generallyis not
necessary to do this, but it may help if you are having trouble with the quality of the residual
Fr eqSine: pitch multiplier; .5 = 1 octave down, 1.5 = perf. 5th up, etc.; see theecmchelpfile pitchratios for
help
Fr eqSineEven: multiplier for only the "even" numbered partials (these actually are the "odd"numbered par-
tials including the fundamental)
Fr eqSineOdd: multiplier for only the "odd" numbered harmonics (actually the even numbered partials)
Fr eqSineStretch : if not set to 1. the sound will be detuned; if greater than 1., the partials will be further
apart in frequency than in the original sound; if set to 1.33, for example, the highest partial will be raised in
frequency by 33 %, and all other partials will be raised as well; ifFr eqSineStretch is less than 1., the par-
tials will be closer in pitch than in the original sound; with a value of .75, the frequency of the highest par-
tial will be only 75 % of its original value
Fr eqSineShift: hertz added to each partial frequency; another parameter that de-tunes the timbre; if set to
17.5, 17.5 hertz will be added to each partial frequency
SameSpectralEnv : flag; default is 0, no effect; if set to 1, SMS will try to maintain the original formants
(emphasized frequency bands) when a sound is tranposed
VibratoWeight : a multiplier for the depth of pitch vibrato inthe source sound; default is 1, which has no
effect; if set to 0 vibrato is removed; if set to a value greater than 1., the vibrato will be exaggerated

Editing the synthesis parameter file template

Let make some changes to our template above to alter the sound:
TimeStretch 2.5

This will stretch the piano tone to 2.5 times its original duration
NoUnvoicedTimeStretching 1

With this flag changed to 1, the initial attack of the piano tone will not be affected by the time stretch
Fr eqSine .749

This will transpose the sound down a perfect fourth.
SameSpectralEnv 1

This will cause the original formants of the tone to be retained, rather than be shifted down a perfect fourth
because of the pitch transpositionwe are performing.

FreqSineShift 17.3
By adding 17.3 hertz to each partial, this will detune the piano tone, which will sound sharp, "out of tune"
and somewhat like a bell or gong.

Be sure to read thesmssynthtp manpage for instructions on editing synthesis parameter templates.
Comments shouldonly be placed at the beginnings of lines, never after parameters. (All lines that include
the comment symbol // anywhere on the line will be ignored.) Do not include blank lines, and place only
one parameter and its argument on each line.

Creating an SMS synthesis file : smssynth

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 22

9.2smsprograms

Once you have edited the synthesis parameter file to your satisfaction, use the ECMC scriptsmssynth
to create the synthesis soundfile:

smssynth parameterfile
whereparameterfileis the name of your edited synthesis parameter file.As discussed in themanpage for
this script,smssynthcorrects a couple of irksome bugs in SMS when it is run in synthesis mode.

Major b ugs and limitations

Tw o of the most powerful syntehsis resources of SMS, both of which work very well in ur older SGI
version of SMS, are broken in the current Linux version we are running.

(1) Multiple output "notes"
The SMS authors frequently refer tosynthesis parameter filesas "score" fi les and recommend naming them
with a .scoextension. Using theMix andBeginEventTime synthesis parameters, it should be possible to
define multiple output "events" ("notes"), beginning and ending at different times and employing different
syntehsis modifications, within a single synthesis parameter file, somewhat as we do with Csound score
files. However, the Mix parameter is partially broken. It can only be used to write the samples created by
the last "note" defined within a synthesis paramter file to a pre-existing soundfile. (See ECMC example
files sms3throughsms3-10for examples.) Sofor now, with the exception ofharmonization(in which the
two, three or four output "notes" begin and end simultaneously, as a "block chord"), SMS synthesis is lim-
ited to creating a single output "note."

(2) Time varying functions (envelopes)

In the SMS documentation of analysis and synthesis parameters you might note that many parameters are
designed to accept not onlyconstantarguments, but also time varying functiondefinitions. SMS functions
are defined by pairs of time/value breakpoints:

time1 value1 time2 value2... timeN valueN
For example, to apply an amplitude fade-in during the first 5 % of the total duration of a synthesized "note,"
and a fade-out during the final 25 % of the synthesis duration, we could apply this function definition to the
Ampparamter:

Amp 0 0 .05 1. .75 1. 1 0
However, FUNCTIONS DO NOT WORK CORRECTLY in the current SMS, and the function above would
cause discontinuities. Functions WILL create an audible change in the parameter, but only during the first
one secondduration of the synthesis. With complex functions involving several breakpoint pairs, often
only the last envelope segment will have any effect.
Because envelope functions do not work correctly, amplitude fades, , pitch glissandi and similar types of
time varying parameter changes generally will not work correctly.

Example synthesis parameter files and soundfiles

Use thelssmsex andgetsmsex commands to list and display ECMC example SMS synthesis parame-
ter files. All of the synthesis parameterfiles have been compiled into corresponding example soundfiles
with the same name within the/sflib/xdirectory. Here are some notes on these example files:

sms1-1andsms1-2: These two similar examples illustrate the two most basic uses of SMS: for time warp-
ing and for pitch transposition. In both of these example files, a violin tone is doubled in duration
(TimeStretch is set to2) and transposed down a minor sixth (Fr eSine is set to .63). The amplitude (Amp
argument) also is reduced to avoid clipping. The only difference between these two examples is that in
sms1-2theSameSpectralEnv is changed from the default 0 to 1, so that the formants of the original violin
tone are retained and the resulting tone sounds more "nasal" and more like a violin. (Examplesms1-1has a
"mellower" timbre, more like that of a viol, because the formants as well as the pitch have been shifted
down).

Examplessms2-1throughsms2-7illustrate independent control of the "even" numbered and "odd" num-
bered harmonics. However, whatsmscalls the "even" numbered harmonicsactually include the fundamen-
tal and harmonincs 3,5,7, etc., while whatsmscalls the "odd" numbered harmonicsactually includes har-
monics 2,4,6, etc).(The SMS authors apparently consider the fundamental to be partial number 0 rather
than partial number 1. This is very annoying!) In all of these examples a violin tone is transposed up a
major second andSameSpectralEnv is set to1 t oretain the formants of the original tone.
In examplesms2-1only the "even" (actually the "odd") numbered harmonics are synthesized, along with

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 23

9.2smsprograms

the residual, and the timbre consequently sounds somewhat like that of a stopped pipe (e.g. a clarinet).In
sms2-2only the "odd" (actually the "even") numbered harmonics are synthesized, and the pitch of the tone
therefore sounds an octave above the fundamental.

sms2-3illustrates a "morph" from only the "even" (actually the "odd") harmonics at the beginning of the
tone to only the "odd" (actually the "even") harmonics by using time varying functions with opposite trajec-
tories for theAmpSineEvenandAmpSineOddparameters. Rememberthat time varying FUNCTIONS DO
NOT WORK PROPERLY in the present version of SMS. In this case, the "morph" should occur over the
entire duration of the note, but instead occurs too quickly over the first one second of the tone.Even
though this is not correct, the example still illustrates "morphing" between the two sets of harmonics. (To
hear how this example issupposedto sound, import this synthesis parameter file intosmsrtsynth).

More tricks: Examplesms2-4is identical tosms2-1except that the "even" (actually the odd) numbered har-
monics are transposed up an octave. Examplesms2-5is identical tosms2-2but now these harmonics are
transposed down an octave so that the fundamental pitch is heard.Examplesms2-6synthesizes both sets of
harmonics, but tranposed as insmsex2-4andsmsex2-5so that the odd harmonics become the even harmon-
ics and vice versa. Finally, exmaplesms2-7is identical to examplesms2-6except thatSameSpectralEnv is
set to0 so that the original formants are NOT retained, and the timbre sounds quite different.

Example soundfile/sflib/x/sms3actually is a composite, or mix, of ten synthesized violin pizzicato tone
transformations created by example SMS synthesis paramter filessms3andsms3-2throughsms3-10. In all
10 tones the pizzicato note is doubled in duration (TimeStretch 2) but not during its initial attack (NoUn-
voicedTimeStretching 1. By setting theMix parameter to1 in parameter filessms3-2throughsms3-10we
mix the synthesis samples into a pre-existing soundfile (initially created by parameter filesms3) rather than
creating a new soundfile. Thisexample illustrates detuning using theFr eqSineStretch parameter, and also
different timbral results that often can be achieved by setting thePhase Alignparameter either to 1 or to 0).
See example filesms3for the details.

Examplessms4-1, sms4-2, sms4-3andsms4-4apply downward transposition and then frequency shifting to
a soprano tone to detune the timbre and shift the tone into various registers.

Examplessms.harm1andsms.harm1illustrate harmonizing.

Examplesms.modfirst mangles the timbre of a piano tone (tranposing the tone down a major second, tran-
posing the even harmonics down further by slightly more than an octave, and tranposing the odd harmonics
up by slightly more than an octave) and then applies both amplitude modulation (tremolo) and frequency
modulation (vibrato) to the resulting sound.

Examplesms.hyb1presents one possible hybridization of a gamelan metallohpne and a bass choir tone.
tone.

Hybridization : cav eat emptor

SMS "hybridization" (or cross-synthesis) requires the use of two analysis files within a synthesis
parameter file.Because timevarying functions do not work correctly in our current version of SMS,
hybridization morphingprocedures (e.g. a piano tone seemlessly transforming into a vocal tone) do not
work, except under very limited conditions.2

Still, it is possible to create intriguing new sonic offspring from two "parent" sounds, so long as the parame-
ter relationships between the two sources remain fixed throughout the duration of the synthesis "note."

Hybridization between two analysis files can quickly become very complicated.First, one can make
all of the usual synthesis modifications, such as pitch transposition, to the data from the "source" (initial)
analysis file. Then, for many synthesis parameters, one can choose whether

(1) to use the data from the "source" (initial) analysis file (if the correspondinghybridizingparameter
is set to0); or
(2) to useinstead the data for this parameter from the hybridizing (second) analysis file (if the corre-
spondinghybridizingparameter is set to1); or

2 Several of the available SMS hybridization parameters, such asHybrizeEnv and hybridizing parameters
whose name includes the string "weight", are specifially designed for "morphing." I have not included most of
these parameters within the hybridizing template provided bysmssynthtp, but a few of them are necessary, and
require edits totwo parameters to implement a change in the sound.

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 24

9.2smsprograms

(3) if the hybridizing parameter is set to some value between 0 and 1., to interpolate a value some-
where in between the values in these two analysis files

Under our current version of SMS I do not recommend trying to employ hybridizationprocedures,
especially for beginning SMS users. Since functions do not work correctly it can be difficult or sometimes
ev en impossible to line up the two analysis files temporally in a manner that yields usable musical results.
Hybridization procedures are documented poorly by the SMS authors, and sometimes you may have little
of value to show (or hear) for all you efforts. If youdo try employing hybridization procedures, I recom-
mend changing only one or two parameters at a time and, step by step, seeing (hearing) what works and
what does not.And don’t be afraid to bail out if you are not making any progress.

9.2.3. Usingsmsrtsynth to perform real time synthesis tests

The SMS distribution includes a graphical application calledsmsrtsynth("SMSreal time synthesis")
that can be useful in testing out synthesis possibilities. This application is rather primitive in sev eral
respects — there are noPreferencessettings to set default paths, for example, and the program has limita-
tions and bugs. Notably, you cannot write a soundfile withsmsrtsynth; you can only test changes in synthe-
sis parameter settings, listening to the results in real time. However, when you have arrived at settings that
produce a good ressult, you can export these settings into a "score" file(a synthesis parameter file) and,
with a little additional work, then usesmssynthto create a synthesis soundfile with these settings.I am hes-
itant to recommendsmsrtsynthbecause it can be buggy at times.Sometimes it will become "stuck" and,
regardless of any parameter changes you make, not respond to these changes.Still, the application some-
times can save you a lot of typing and time when experimenting with synthesis possibilities.

smsrtsynthwill only display synthesis parameters that have been loaded.By default, the program
opens with a blank window, and in order to edit parameters you must click on the word Parameters, then on
Add, then highlight the parameter or (consectutive) group of parameters you want displayed and click on
Select. This is tedious when you want to load displays for several parameters.Groups of parameter dis-
plays, called "Properties," can be saved to a file and then loaded. I have created several "properties" files,
with .prp filename extensions, that you can load when you first opensmsrtsynth. First copy these "property"
files to the directory in which you will be working withsmsrtsynth, by typing:

getsmsprp
The following .prp files will be copied to your directory:

smsrtsynth.prp: contains "properties" for editing the most commonly used SMS synthesis parame-
ters, similar to the "basic" short template obtained with thesmssynthtpcommand with no options
The following three "properties" files include all of the parameter displays available in thesmsrt-
synth.prpfile, but also add more displays for editing additional parameters:
smsrtsynth.harm.prp: adds widgets for editingharmonizationparameters
smsrtsynth.mod.prp: adds displays for editingmodulationparameters
smsrtsynth.hyrbid.prp: adds displays for editinghybridizationparameters

One of the bugs insmsrtsynthis that it does not properly load analysis files. Before usingsmsrtsynth,
therefore, you first should create a synthesis parameter file, usingsmssynthtp. When you first opensmsrt-
synth, begin by loading the.prp file that suits your needs.To load a basic "property" template, click on
File, then onLoad Properties. In the window that opens, if you see the message "No matching files," click
on the*.prp button and then select the appropriateprp file.

Next load a previously created synthesis parameter file (also called a "score" or.scofile in SMS),
which must include the name of the analysis file to be used. Click onFile, then onLoad score file and select
the synthesis parameter file with which you want to experiment.

Begin making changes in the parameter values and press thePlay button to hear the results. Changes
can be made in real time, and you can use theLoop button to the right of theStop button to loop the syn-
thesis continuously. To remove a parameter, select it and click onthe Remove button. To add additional
parameters for editing click on theAdd button.

When you have arrived at settings that merit saving, click onFile and then onExport score file and
save your settings to an ASCII file.This file will look somewhat more complicated than those you create
with smssynthtpbecause each parameter will be defined as a time varying function:

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 25

9.2smsprograms

AmpSine 0 1.000000 1 1.000000
This means that at time 0 (the beginning of the note)AmpSinewill have a value of 1.00, and at time1 (the
end of the note) it will (also) have a value of1.00. Alas, the resulting synthesis parameter fileis not yet
ready for use bysmssynth. If you display the file, you will see thatsmsrtsynthdoes not save the filename
parameters or the names of any input or output files when it exports parameter values, and it does export a
setting for real time output (rather than writing the synthesis to a soundfile), which you do not want. To
prepare the exported file for use bysmssynthuse the ECMC utilityfixsmsscore, which has the syntax:

fixsmsscore inputparamterfile analysisfile [outputsoundfile]
where

nputparamterfileis the name of the input sms analysis file ;
nalysisfileis the name of the sms analysis file to be used for synthesis and
utputsoundfileis the name of the output synthesis soundfile, generally including a .wav, .aif or .aiff
extension. The default soundfile name, if you omit this argument, istest.wav.

Example:fixsmsfile cellotest1vc.gs2.sms cellotest1.wav
Result: The synthesis parameter filecellotest1,created with smsrtsynth will be edited to that it can be used
by smssynth to synthesize a soundfile.The following 2 lines will be added at the top of the file:

InputSmsFile /snd/allan/cellotest1.sms
OutputSoundFile cellotest1.wav

and the line setting theSynthesisOutputto 2 (for real time playback) will be removed. File cellotest1now
will be ready to use withsmssynth.
See thefixsmsscore manpage if you want more information.

If smsrtsynthgets in a weird state and does not respond to your edits select the last parameter you
changed, click onProperties andthen onOK andif you are lucky smsrtsynthwill begin responding again.
If not, export your settings to a file (if you want to save your work), quit and reopen the app.

9.3. LPCanalysis and resynthesis procedures
Linear predictive coding (lpc)algorithms are based on estimation procedures (mathematical opera-

tions that try to predict what will come next on the basis of what has already occurred within a linear
system).3

These techniques have applications in many fields. For musical purposes, linear prediction routines
most often are used to determine the time-varying resonances, or formant frequencies, of a given sound.
This data is stored as filter coefficients in a file. These filter coefficients can then be used to resynthesize the
original sound, usually with changes in timbre, duration, or pitch, or to "cross-breed" it with some other
sound to produce a hybrid offspring with some characteristics of both "parents."A " talking cello" would be
a simplistic example ofsuch cross-synthesis.

Most of thelpc programs and utilities we use are based upon procedures originally developed by Paul Lansky and others at

Princeton University, and subsequently modified at MIT. The musical results of these techniques are perhaps best known through such

compositions as Lansky’s Idle Chatter, Just More Idle Chatter, Guy’s Harp andSix Fantasies on a Poem by Thomas Campion.Charles

Dodge, best known today for his work with fractal compositional algorithms, also created several works in the early to mid 1980s

based almost entirely onlpc techniques. Many compositions realized here at the Eastman Computer Music Center, including compact

disc recordings of my own computer works, also make extensive use oflpc and related analysis/resynthesis techniques.

Like phase vocoder, sms and other types ofanalysis/resynthesisprocedures, linear prediction is a
two-step process that involves

(1) analysis of a sound source (almost always monophonic)
followed by

3 Tutorial introductions tolpc procedures are included inAn Analysis/Synthesis Tutorial by Richard Cann
(reprinted on pages 114-144 inFoundations of Computer Music,edited by Roads and Strawn), and in an article
by Paul Lansky in Chapter 1 ofCurrent Directions in Computer Music.A more technical and detailed introduc-
tion can be found inThe Use of Linear Prediction of Speech in Computer Music Applicationsby James A.
Moorer, Journal of the Audio Engineering Society, Vol. 227 number 3, March 1979, beginning on page 134.
TheLPCdiscussion within Roads’Computer Music Tutorial also is recommended.

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 26

9.3 lpc analysis procedures

(2) resynthesis operations, in which we use this analysis data to create a new soundfile.

The lpc analysis stage itself is generally a two-step process, consisting first of aspectral analysis followed
by a separatepitch analysis, which then is merged into the spectral (lpc) analysis file.

lpc techniques can be fun to use, but they can also be time-consuming and at times frustrating.A
usable, high qualitylpc spectral and pitch analysis frequently is more difficult to obtain than a correspond-
ingly usable phase vocoder analysis of the same soundfile.Several tries, or possibly some "massaging"
(editing and smoothing) of the analysis data may be necessary to achieve the desired result, andlpc proce-
dures work much better in some instances than in others.Determination and patience often (but not
always) will be rewarded. Themore complicated your initial sound source or resynthesis procedures, the
more likely you are to encounter problems.

On the up side, however, lpc procedures offer some unique possibilities for modifying, shaping and
combining acoustic sounds.Pitch, timbre and duration can become independently controllable dimensions.
Once we have created a successful analysis of a soundfile, we can use this analysis data to create any num-
ber of resynthesized variations or transformations of the original sound.A door slam might be stretched to
a duration of six seconds, or transposed to the register of a bass drum, or "played" as a pitch melody, or be
used as a resonator for violin tones.

Eastman software for performing lpc analysis and resynthesis

☞ At Eastman, the recommended way to perform anlpc analysison a soundfile is withmixviews:4

☞ To perform lpc resynthesis, two methods are recommended:
(1) mixviews : Generally this is the easier method, and is recommended for resynthesis of isolated
sounds
(2) Csound : Eastman Csound Library algorithmresynprovides many modification possibilities for
resynthesis, while a Library module calledxsyn offers similar possibilities for cross-synthesis
between two sound sources. These algorithms are particularly recommended when you want to create
manyresynthesized sounds (e.g. rhythms, melodies, chords, complex textures, and so on).

9.3.1. LPCAnalysis Procedures

An lpc analysis consists of filter coefficients that represent the strongest formants (resonances), and
their relative amplitudes, of the source sound at evenly spaced time intervals, calledwindowsor frames.

The resulting analysis data is in a binary floating point format, and includes a special type of header. This data cannot be

played or otherwise used like a normal soundfile; it can be displayed only bylpc software designed for this purpose (and not

by Unix programs such ascat), and it is useful only as input tolpc resynthesis software.

Some good news: Unlike the many phase vocoder analysis procedures surveyed earlier,
mixviewswrites analysis files in a format that can can be used for subsequent lpcresynthesis either by
Csoundor bymixviews.

Spectral analysis parameter values

When performing the spectral (formant) portion of the analysis, the user must make two basic decisions:
• how many filter polesto use, and
• how many analysis frames to create for each second of sound; this value can be provided either in
terms of aframe offsetargument or else in terms of aframe rateargument

In setting these values, and also the the pitch parameter arguments that will follow, keep in mind that, for
historical reasons, and to conserve disk space, the default values generally are optimized for lower sampling
rates, such as 22k, rather than for 44.1k soundfiles.In fact, in some caseslpc resynthesis procedures will
work betterwith 22k soundfiles than with 44.1k source sounds.However, most of your work likely will be

4 An alternative standalone program calledlpanal, distributed withCsoundand documented at the end of the
Csoundmanual, provides a Unix command line syntax for performinglpc spectral and pitch analysis. However,
as of this writing (Csound version 3.49), there are a number of problems with this program, and it is not recom-
mended. Unless the recently added-a flag is included on the command line to perform pole stabilization, analy-
ses of speech and other sounds that change rapidly in timbral formants tend to produce obnoxious chirps and
pops. If a-a flag is included, the resulting analysis file is only readable by Csound unit generatorlpreson, not by
the more powerful lpfresonopcode used in Eastman Csound Library algorithmsresynandxsyn.

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 27

9.3 lpc analysis procedures

done on 44.1k soundfiles, and you will want to change some of the default values to achieve better results.

Analysis: Resynthesis
mixviews mixviews Csound

Default Maximum Maximum Maximum

Number ofpoles 34 64 64 c.50

Fr ame offset 220 500
or

Fr ame rate (0)

The Poles argument determines the number of separate filter coefficients (partial frequencies) that
will be analyzed and written into each analysis frame. The more complex the timbral spectrum of a source
sound, and the lower its pitch, the higher you should set this value. A value of 34 poles specifies that the 17
strongest frequency components of the source sound will be extracted. In setting thepolesvalue, the basic
rule of thumb is:

Determine how many spectral frequencies you want to analyze. Double this number and, if it does
not exceed the maximum value allowed, use it as yourpolesargument. 44.1k soundfiles often require
higher values than 22 k soundfiles.Note, however, that while up to 64 pole can be used in resynthe-
sis withmixviews, Csound has a lower limit, which seems to be about 50, and a Csound job will abort
when it encounters anlpc analysis file with "too many" poles.

When analyzing 44.1k sounds with complex timbral spectra, such as a tone in the bottom register of
the cello, or most percussive sounds, values such as 40, 50 or (if you will be usingmixviews rather than
Csoundto perform resynthesis) even 64 may be appropriate.When analyzing acoustically simpler sounds,
such as a flute tone that may contain only eight or ten significant partials,pole arguments between 16 and
24 often work well. Specifying too many poles may result, upon resynthesis, in amplitude beating,
unwanted "reverberation," "flanging," smearing, or other types of spectral distortion, especially when the
pitch is transposed or the duration is stretched.

When analyzing vocal sounds, a value of somewhere between 20 and 30 generally is recommended
for an initial try. If the resynthesis sounds thin, dull or muffled, try increasing this value, but keep in mind
your ultimate resynthesis goals.Higherpolevalues may produce a "warmer" resynthesis if the pitch is not
transposed, but if you do ev entually perform pitch transposition, or shift the formants, the original pitch of
the source soundfile may bleed through, producing unwanted "harmonizing."

For advanced users: Sometimes, deliberately "underspecifying" the number of poles — say, with a value of 16 or so for a rich

vocal bass or trombone tone, or for a percussive sound — can create interesting timbral effects upon resynthesis, simplifying

the timbre such that only its "skeleton" remains.

The Fr ame offsetargument, given in samples, determines (somewhat indirectly) how frequently the
analysis will be updated (that is, how many analysis windows will be created to represent each second of
sound). With themixviewsdefault value of 220, the first analysis frame will begin at sample 0, the second
frame at sample number 220, the third frame at sample number 440, and so on.5

If we are analyzing a44.1k soundfile thelpc analysis will be updated roughly every five milliseconds
[220 / 44100 = .0049886 seconds]

and theframe rate, which equals thesampling ratedivided by theframe offset, or the number of frames per
second, will be 200.45

[44100 / 220 = 200.45455 frames per second]

Almost surely, this update rate is much higher than necessary for good signal representation.An analysis
update rate of 100 frames per second is sufficient for all but the most complex and rapidly changing timbres
and amplitudes. In fact, at higher sampling rates the default frame offset value of mixviews can cause
overspecificity (unduly large analysis files, needlessly long run times for the analysis and often, in fact, a
poor analysis, since each analysis window encompasses such a tiny portion of the source sound).The

5 For the curious: Actually, this is an oversimplification. lpc analysis programs typically create double the
number of user-specified analysis frames, which overlap (sharing many of the same samples with adjacent
frames, as in phase vocoder analysis procedures) in order to prevent discontinuities during resynthesis.

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 28

9.3 lpc analysis procedures

default frame offsetvalue provided bymixviewsactually is optimized for 22k soundfiles, where it will cre-
ate updates every 10 milliseconds, or 100 frames per each second of sound.

☞ When analyzing44.1k soundfiles, therefore, you generally will achieve better results by changing
theframe offsetvalue to400 or 500.

Most users rarely fiddle with the alternative Fr ame rateargument (which, again, equals thesampling
rate divided by frame offsetvalue). However, if you wish, you can set this argument to a desired value,
whichmixviews then will use in place of the currently specifiedframe offsetargument.

Setting pitch analysis argument values:

For string, wind, sung and spoken sounds, accurate pitch data is essential to achieving high quality
resynthesis. However, pitch tracking sometimes is the most difficult or least successful portion oflpc anal-
ysis. In fact, many noise-like, percussive or otherwise aperiodic timbres (such as a maraca roll) may not
yield a usable pitch analysis, and the spectral analysis data may be all that is needed for successful resyn-
thesis. This can be true even for such seemingly pitched, or quasi-pitched, timbres as crotales and temple
blocks.

The more complex the pitch contour and spectral evolution of a sound source, the more likely the
pitch extractor algorithm will have trouble accurately tracking the pitch.Fundamental frequencies below
100 herz, or above 1000 herz, may be difficult or even impossible to capture.Glissandos, rapid or wide
vibratos and other pitch inflections may not be captured accurately. The rapidly changing pitch of spoken
sounds can be particularly difficult to capture.

In this area, as in certain aspects oflpc spectral analysis,mixviewsprovides some handy tools unavailable withLPC.app. If we

can get close to an accurate pitch analysis withmixviews, we can applying a simple smoothing operation, provided in the application,

that can significantly improve the quality of the pitch data.

The principalpitch analysisarguments, and their default values, are summarized in the following table:

Pitch analysis arguments: mixviews
Default Maximum

Fr ame size (number of samples in each frame) 350 1000
Fr ame offset (number of frames per second) 200 505
Fr ame rate (0)

Highest estimated frequency(herz) 1000
Lowest estimated frequency(herz) 100

The frame sizevalue should be sufficiently large so that each frame encompasses at least one com-
plete frequency cycle of the wav eform. The maximum value allowed bymixviews is 1000. The default
value of 350, again, seems to be optimized for 22k soundfiles.

☞ For 44.1k soundfile, this default often should be raised to about 500.
☞ Use higher values forlow pitched tones, lower values forhighpitched tones.
(The lower the pitch of a tone, the longer its wav elength period, and the more samples required to represent each cycle).

Generally, theFr ame offsetargument should be set to about 1/2 theframe sizevalue.

To provide the analysis programwith some initial help, so that it does not mistake a strong harmonic
or a resonant frequency for the fundamental pitch, give careful attention to theHigh estimateandLow esti-
matearguments. Thesetwo arguments respectively specify the highest and lowest possible fundamental
frequencies that you believe may occur within the soundfile.If you know the approximate pitch of a source
soundfile, you can use thehelp file herz, or else the Eastmanmidinotescript, to find the frequency of this
pitch. The narrower the range between theHigh boundaryandLow boundaryvalues you provide, the more
likely your pitch analysis will be successful. However, be careful not to specify a pitch range that is too nar-
row, or the analysis may miss pitch inflections, especially during attacks.Also, remember that the
perceived pitch of a sound does not always coincide with the physical frequencies of a timbre, particularly
in the case of the strike tones of percussive sounds.

Example lpc and pitch arguments:

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 29

9.3 lpc analysis procedures

To help users in their initial attempts to masterlpc resynthesis and cross-synthesis procedures, we
have placed several lpc analysis files in the/sflib/anal/lpcdirectory of botharcanaandsyrinx. These analy-
sis files also have been used in example scores for Eastman Csound Library algorithmsresyn, xsynand
lpcpitch. The table below provides most of the spectral and pitch analysis arguments used to create some of
these public domain analysis files.

LP ANALYSIS PITCHANALYSIS
Poles: Frame Frame Dur: Fr ame Frame High Low

offset: rate: size: offset: est.: est.:
[default mixviewsargument:] [34] [200] [EOF] [350] [200] [1000] [100]

Analysis file:
sop1.fs4.lpc 24 441 100 8.47 1000 441 400 320

source soundfile:sflib/voice/sop1.fs4.snd

crt.fs5.lpc 34 200 110.25 5.46 Not performed
source soundfile:/sflib/perc/crt.fs5.snd

22voicetest.lpc 34 200 100.25 7.26 500 200 310 90
source soundfile:sflib/x/voicetest.snd(22k)

maracaroll.lpc 34 400 100.25 7.26 Not performed
source soundfile:/sflib/perc/maracaroll.snd(44k version)

vc.p.c3.lpc 34 200 220.5 2.28 350 150 200 125
source soundfile:sflib/string/vc.p.c3.snd

sdrum1.broll.lpc 34 504 87.32 1.64 Not performed
source soundfile:/sflib/perc/sdrum1.broll.snd

oboe.d4.lpc 34 200 220.5 2.62 1010 200 350 261
source soundfile:sflib/wind/oboe.d4.snd

fl.e4.lpc 20 504 87.32 3.47 1010 505 369 310
source soundfile:sflib/wind/fl.e4.snd

Notes on these analysis files:

• Note that the sampling rate of thevoicetestsource soundfile is 22k rather than 44.1 k, simply because I had better luck ana-

lyzing a 22k copy than the 44.1 k original soundfile.When using an analysis file derived from a 22k source soundfile (includ-

ing any analysis files within/sflib/anal/lpcwhose name begins with the prefix22), we also must employ a 22k sampling rate in

our resynthesis jobs.

• Although it might at first seem surprising, no pitch analysis is required for successful resynthesis of the crotale tone

(crt.fs5.lpc); the f#5 pitch we hear is a strike tone — a result of certain quasi-harmonic ratios within a basically inharmonic

timbral spectrum.

• The snare drum brush roll analysis (sdrum1.broll.lpc) captured the lower frequencies of the source sound better than the

higher frequencies.(One can compensate for this, somewhat, by boosting thebrightnessscore parameter for Library algo-

rithm resyn, or by processing the resynthesized soundfile through an EQ network, such as with thegQ application, and boost-

ing higher frequencies.)In addition, the analysis file produced an attack and decay that are more abrupt than the original.

• The cello pizzicato tone analysis (vc.p.c3.lpc) results in significant amplitude loss in resynthesis, which can be restored by

boosting the amplitude multiplier argument inresynto about 2.0.

Special problems in analyzing spoken and percussive sound sources:

The analysis and resynthesis of speech presents some special problems, and it is recommended that
you do not attempt to analyze and resynthesize spoken sound sources until you have gained some experi-
ence withlpc analysis and resynthesis procedures.The three most vexing problems are

• the rapidly changing pitch inflections of speech, which in some cases may exceed the capabilities of
lpc pitch tracking algorithms;
• rapid changes in timbral spectrum, particularly on consonants; and, especially
• the many brief silences (e.g. from glottal stops) that often occur within speech.

Occasionally, the lpc analysis values that result from consonants, brief silences and near-silences produce
horrendous noise bursts (resynthesis amplitude values far in excess of 32767). With mixviews, these gener-
ally can be eliminated byperforming pole stabilization and smoothing smoothing operations on the

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 30

9.3 lpc analysis procedures

analysis data.

For similar reasons, quasi-pitched percussive sounds with very sharp attack and decay transients can
be difficult or impossible to analyze and resynthesize successfully. For example, I have had little luck with
tom toms, timbales or most other types of drum sounds.

The problem of silences within sounds can be very annoying. lpc analysis programs, including
mixviews, typically have difficulty even when confronted with brief silences (as short as 20 or 30 millisec-
onds, if this duration is greater than the duration of a single analysis frame), andoften will abort with an
error message such as

"Cannot analyze frames with zero amplitude" (mixviews)
or the cryptic "gauss ill conditioned." If an analysis aborts with such an error message, first determine the
source of the problem:

• If you are analyzing a continuous tone or sound, the silence may well be at the very beginning or
very end of the sound, due to inadequate trimming. Try correcting this by eliminating this beginning
or ending silence. (With mixviews, make a selection by dragging over a the input soundfile wav eform,
but leave out the silence.)
• If you are analyzing speech or someother sound source that may include several brief silences, the
best solution is to give the analysis program something to analyze during these silences. The
/sflib/anal/lpcdirectory includes a "soundfile" calledsubaudionoisedesigned solely for this purpose.
Open this soundfile in a new window, then select (drag over) a duration that matches the duration of
the soundfile to be analyzed. Then, in the window of the soundfile to be analyzed, selectMix under
theEdit menu. The samples from thesubaudionoisewindow (which are inaudible) will be mixed in
with (added to) the sample values for the source signal, eliminating the zero amplitude "silences."
Do not save this altered version of the source soundfile.

Perf orming LPC spectral and pitch track analysis with MIXVIEWS

(1) Openmixviews(by typingmxvin a shell window) and then open the soundfile to be analyzed:
• UnderFile, selectOpen. In the selection box that appears, choose or type in the name (and, if nec-
essary, the directory path) of the soundfile to be analyzed.

(2) A soundfile windowwill open with an amplitude display of this soundfile.
In this window, you must select (highlight) the portion of the soundfile to be analyzed.

To select the entire soundfile, click anywhere within the wav eform display with the right mouse button. To select only a por-

tion of the complete soundfile, click with theleft mouse button to select thebeginningpoint, and with themiddlemouse button

to select anendpoint. Theregion of the soundfile to be analyzed now should be highlighted.

Reminder: Take particular care in making this selection.If the soundfile includes even a brief silence
at the beginning or end, use the left and middle mouse buttons to delete this silence — but none of
the actual sound wav eform — from the selection to be analyzed.

(3) In the soundfile window, click on Analyze, then onLPC & Pitch Envelope.
This will initiate first anlpc spectral analysis, then apitch analysis. Before each of these analyses, a "dialog
box" will open in which you must set the parameters for the analysis.

(4) Within the lpc analysis: dialog box you must set either
☞ aFr ame size(in samples; default = 220, but higher values often work better))
or a
☞ Fr ame rate(default, in herz, is 0)

If the Fr ame rate is left at zero, the value for theFr ame offsetwill be used. If theFr ame rate is set to any value, this value will be used

for the analysis, and theFr ame offsetvalue will be ignored.

Generally it is easier to deal with theFr ame offsetvalue. If you are analyzing a 44.1k soundfile, rais-
ing theFr ame offsetvalue to 400 or 500 (in order to create approximately 100 analysis frames for
each second of sound), usually will produce a better analysis, and also may avoid a beginning or end-
ing frame of zero amplitude.

After setting these two values click onConfirm tolaunch the analysis.

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 31

9.3 lpc analysis procedures

If, while performing the analysis,mixviews encounters frames with zero amplitude, it will display the error message
Cannot analyze frames with zero amplitude

If this happens, you should abort the analysis, reset the soundfile region to be analyzed (or else mix in some subaudio noise)
and try again:

• In the error message box, click onOK
• A Pitch Trackanalysis dialog box will appear. In this box, abort the pitch analysis by clicking onCancel

(5) After performing thelpc spectral analysis,mxvwill open two windows:
☞ A full screen window will include four graphical displays of thelpc data:

• The top display, generally of little interest, graphs theresidualsignal (Resid. R) produced by
the analysis.
• The second display (Signal R), very similar to the display within thesoundfile window,
graphs the root-mean-square amplitude of the soundfile
• The third display shows theError function produced during thelpc analysis.
For tones with a well defined pitch, such as an arco violin tone, this value will remain very close to 0 throughout the

analysis, and its display may even appearto be blank.

• The bottom display, which is blank, is reserved for pitch track data, which has not yet been
performed.

☞ Superimposed on thelpc data display window will be a dialog box in which you set parameters for
a pitch analysis. Generally, it is best to perform a pitch analysis at this time, and return to thelpc dis-
play later.

(6) In thePitch Track Analysisbox:
Even if you are dealing with an aperiodic signal without a well defined pitch, you should perform a
pitch analysis. In this box you must set the "pitch track" parameter values for

• Fr ame size(in samples; default = 350 samples ; maximum = 1000)
• Fr ame offset(in samples; default = 200 samples)(Number of frames per second)

• Fr ame rate(default = 0)(As in thelpc dialog box, this flag parameter generally can be ignored.)

• High Freq. Boundary(highest estimated frequency, in herz; default = 1000)
• Low Freq. Boundary(lowest estimated frequency, in herz; default = 100)

With 44.1 k soundfiles, raising theFr ame sizeto 500, or to the maximum 1000, and perhaps raising the
Fr ame offsetvalue as well, may produce a better analysis.
Adjust thehighandlow estimated pitch values to a narrower range.

After setting these values, click onConfirm ortap a carriage return to launch the pitch analysis.

(6) After the pitch analysis has been performed a window will open that displays the pitch data ("frequency
envelope") and, again, an amplitude envelope of the source soundfile.

If you see abrupt discontinuities in the pitch envelope display (other than during the attack) which
you believe may be erroneous (not a true reflection of the actual pitch envelope of the source sound-
file) you can smooth out these discontinuities. Select a region for editing, then, under theModify win-
dow, selectsmooth curve. You can perform this "smoothing" operation on the selected region several
times in succession if necessary.
("Smoothing" of the pitch track data also can be performed, however, after merging this data into thelpc analysis.)

Advanced users should note that the pitch data also can be modified in various other ways (for example, reversed, or

cross faded with another pitch analysis_) by various operations available under theEdit andModifymenus.

If the pitch data looks okay, select the region to be used by clicking in the display with the mouse. To select
and highlight the entire pitch analysis for inclusion within anlpc file, click anywhere within the display
with the right mouse button.
Now move this window out of the way, either byminimizingthe window (by clicking in the small box near
the right edge of the titlebar), or, less commonly, by dragging it on its titlebar to a corner of the monitor dis-
play.
Although it is possible to save this pitch data to a file, it is more common to discard the data after merging it
into anlpc analyis file.

(7) Return to thelpc analysis window. To merge the currently selected pitch data into thisanalysis, select

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 32

9.3 lpc analysis procedures

merge pitch data under theLPC menu. The data from the pitch track window now should appear in the bot-
tom display (freq. in) within the lpc window.
A highly recommended additional step: Make sure that the entirelpc display still is highlighted. Then,
under theLPC menu, selectstabilize frames. This operation will search for abrupt discontinuities within the
lpc data, which can result in chirps, bloops, maxamp white noise and other artifacts during resynthesis, and
will smooth out these discontinuities through a process of interpolation.

The LPC menu also contains a selection calledadjust pitch deviation, Choosing this option will open
another box in which one sets values by which the pitch track data can be smoothed.
(Alternatively, though much less commonly, pitch inflections can be exaggerated by this operation.)

Advanced users: Note than various additional types of modification of thelpc data are available under theEdit andModify

menus.

(8) At this point, it usually is best to save the lpc data to a file.The filename should end with the extension
.lpc. Otherwise,mixviewswill not be able to reopen this file in the future.
To obtain information on the analysis parameters that created this file, either now or any time in the future,
selectfile informationunder theFile menu.

9.3.2. LPCResynthesis
In lpc resynthesis, two synthetic audio signals
— a pitched pulse train wav eform with exactly harmonic partials, and
— white noise

are mixed to form a compositedri ver (source) signal, which then is filtered through the time varying reso-
nances provided by the filter coefficients of anlpc analysis file. Pitch data from the analysis file controls the
pitch of the pulse train oscillator, and the relative amplitudes of the pitched and noise components are con-
trolled by the (time varying) error coefficients within the analysis. If the source sound that was analyzed
was an oboe tone, the pitched component (the pulse wav e) will be dominant in the resynthesis; if a maraca
was analyzed, the driver might consist entirely, or almost entirely, of white noise.

The combination of pulse wav e and broad band noise models some acoustic sounds (such as the
human voice) much better than other sounds (such as a piano tone).The exact harmonicity of the pulse
train also does not match the frequency ratios of an acousticpiano tone, in which harmonics become pro-
gressively "sharper"). Thus, vocal tones generaly are better candidates forlpc resynthesis than piano tones.
However, lpc analyses of piano tones may prove very useful inlpc cross synthesis. In this resynthesis tech-
nique, some other acoustic sound, such as a trumpet or gong tone, is used as a driver (in place of the syn-
thetic pulse train and white noise), and is processed through the resonances and amplitude envelope of the
piano tone.

Perf orming lpc resynthesis with mixviews

After creating anlpc analysis file withmixviews, it is a good idea to test this analysis immediately by
performinglpc resynthesis. Ifthe analyis does not produce resynthesis of acceptable quality, you will need
to redo it, changing some of the analysis parameters.

To perform lpc resynthesis withmixviews, follow these steps:

(1) Open a window for thelpc analysis file, if it is not already open, and, select the region of this analysis to
be used in resynthesis.
To select the entire analysis file, click anywhere within the display with theright mouse button.

(2) Under theFile menu, selectNew Type, thenSound file.

(3) In theCreate New Soundfilebox that opens, set the following parameter values for this resynthesis
soundfile:

• an outputduration (The default value ofone secondalmost always must be changed.)
In setting the outputduration argument, you determine whether or not time warping will be
applied during resynthesis. To perform "straight" resynthesis, with no time expansion or

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 33

lpc resynthesis

compression, yourduration argument should match the duration of thelpc analysis. Ifyou do
wish to perform time warping, simply set this argument to the desired output duration.

• thesampling rate, which should match the sampling rate of the soundfile that was analyzed
If the sampling rate does not match the sampling rate of thelpc file you will be warned but allowed to continue if you wish.

The formants and duration of the resulting output soundfile will not be "correct," and, unless you get lucky, you probably will

not like the resulting resynthesis.

• anamefor the new soundfile.
After setting these parameters, click on theConfirm box.

(4) A blank new soundfile window will open. Under theSoundmenu, selectSynthesis, and thenLPC resyn-
thesis. Yet another "dialog" box will open, in which you can set resynthesis arguments for

• Gain factor (default = 1.)
If the resulting soundfile is too loud or too soft, the resynthesis job can be redone and this value adjusted.

• Unvoiced threshold (default = 1.0)
This argument determines the frameerror valueabovewhich the driver for resynthesis will consist entirely of white noise.

• Voiced threshold (default = 0.0)This argument determines the frameerror value belowwhich the driver for resyn-

thesis will consist entirely of a pitched pulse train.

Actually, since thelpc error data always will be between 0 and 1., and most often below .3, these two default thresholds

always will result in a driver that is a mixture ofwhite noise and a pitched pulse train.

• Voiced/unvoiced amp factor(default = 3.0)
By default, the amplitude of the pulse train component of the resynthesis driver will be three times the amplitude of the white

noise component.

The default values for these four parameters often are a good beginning point. However, to achieve high
quality audio resynthesis, or a particular timbral quality, it sometimes will be necessary to make adjust-
ments in these values.

lpc error data above .3 or so is typical of percussive, unpitched sounds.Reducing theUnvoiced thresholdto a value of .8, or

perhaps .5, or even lower, and raising theVoiced Thresholdvalue slightly, perhaps to .02 or so, may produce better resynthesis.

To increase the noise component within a resynthesis (often important for high frequency resolution and attack noise),

decrease the3. in theVoiced/Unvoicedparameter. To reduce the noise component, increase this value.

After setting these parameters, tap a carriage return or click onconfirmto begin resynthesis compilation.

(5) After resynthesis has been completed, a wav eform display of the resulting sound will appear, and you
can play this sound. If you are happy with the results, perform aSaveoperation. If not, and if you wish to
redo the resynthesis within this window, select remove from theEdit menu to delete the current resynthe-
sized sound, and then, depending upon what you wish to change, return either to step 3 or step 4 above.

Perf orming lpc cross synthesis with MIXVIEWS

To usemixviews to filter a soundfile through the formant data from a previously createdlpc analysis
file, follow these steps:

(1) Open a soundfile. In the wav eform display, select all or a portion of this soundfile to use as a driver to be
filtered through the resonances of the analysis.

(2) Make a copy of this selection. This precaution will assure that you do not inadvertently destroy data in
the original soundfile.

Under theEdit menu, selectCopy to New.
A new window will open, with a copy of the wav eform display. Perform all further work in this copy
window.

(3) Change the format of the soundfile copy from 16 bit integer to floating point.
Applying the filter coefficients from anlpc analysis to an integer soundfile often results in very high amplitude values and, as a

result, maxamp white noise. To avoid this, the driver selection should be converted tofloating pointsformat, in which all sam-

ple values range between 0 and 1.

• Under theSoundmenu, selectChange sample format.
• In the box that opens, the default new format should be set tofloating point. If not, click on this

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 34

lpc resynthesis

button, then onConfirm.
(After conversion to floating point format, the soundfile copy still can be played.)

(4) Open a window for an lpc analysis file, and select the region (often the entire analysis) to use as a filter
source. Then minimize this window.

(5) Filter the floating point driver copy through the formants of thelpc file data:
• Under theModifymenu, selectFilter, thenLPC Formant.
• A box will open in which you can set aGain factor(default = 1.). Then click onConfirm to per-
form the cross synthesis operation.

(6) When the cross-synthesis is completed, play the resulting sound.
If you wish to save this sound, it first must be converted from floating point back to 16 bit integer format.
To do this:

• Make certain that the whole new soundfile, or the region you wish to save, is selected and high-
lighted. Then
• Under theSoundmenu, selectChange sample format.
• In the box that opens, click on16 bit linear if this button is not already selected, and then click on
confirm
• Now perform a save operation on the soundfile in the normal manner.

Perf orming lpc resynthesis and cross-synthesis with Csound

In order to compile a resynthesis or cross-synthesis soundfile withCsound, one must create a suitable
orchestra file algorithm and a companion score file.To simplify this process, the Eastman Csound Library
includes several instrument algorithms and processing modules (subroutines included within some other
instrument) designed to facilitate various types oflpc resynthesis operations. These resources include:

resyn— creates resynthesis soundfiles

xsyn and gxsyn— create a cross-synthesis soundfiles

lpcpitch, xsynpitch andgxsynpitch — read in the pitch track data from anlpc analysis file and pass it
to some instrument (such as algorithmsamp)

Manual documentation, along with the customary score templates and example scores for these algo-
rithms, are included within theEastman Csound Library binder available in the studio.Soundfiles com-
piled from these algorithms andexample scores are located, as usual, in thesflibx directory. Advanced
users may wish to write their own resynthesis and cross-synthesisCsoundalgorithms for particular pur-
poses, perhaps using the generic Library algorithms we have provided as models.The unit generators
lpslotandlpinterpol, introduced in 1996, enable one to interpolate between two or more analysis files.

Creating a link to an analysis File : LPLINK

In addition to preparing orchestra and score files for aCsoundresynthesis job, however, the user also
must create alink to each analysis file to be used. In order for us to be able to specify particularlpc analysis
files in a score parameter, Csound requires that these analysis files be calledlp.#, where# is an integer
(lp.1, lp.3, lp.14, and so on). Furthermore, the analysis file must be located in the same directory from
which you submit aCsoundjob. As previously noted, at Eastman we store analysis files on thesnddisks,
rather than in user directories on the smaller system disks, since the large size of these files could quickly
fill up the /u partition of the system disk.Therefore, it is necessary to create a Unixlink file called lp.#
(where# is an integer) which "points to" the desired analysis file on yoursnddirectory. Example:

lplink myvoice.lpc 2

Result: This command will create a link file calledlp.2 in your current working Unix directory, that points
to analysis filemyvoice.lpc in your $SFDIRdirectory. See the manual page onlplink for more details and
options, or else type the commandlplink with no arguments. Besure to remove theselp.# link files as soon
as they are no longer needed.

Eastman Computer Music Center User’s Guide, Section 9 :Page IX: 35

