
8. Introduction to the Eastman Csound Library

(This section last updated August 2004)

The Eastman Csound Library, the topic of this section of the Users’ Guide, is a collection of front-
end programs, "instrument" algorithms, score file preparation programs and assorted utilities designed to
simplify ECMC users’ introduction to, and use of, the Csound music compiler. Csound is a widely used
software audio synthesis and signal processing package, available at no cost under the LGPL (Lesser Gen-
eral Public License) from the Csound Home Page web site (http://csounds.com) in versions Linux (and
other flavors of Unix), Macintosh and Windows.

Csound initially was developed on Unix systems during the 1980s by a team led by Barry Vercoe at
the Massachusetts Institute of Technology and employed a commands issued from shell windows. During
the 1990s the Csound programs were ported to Macintosh, Windows and other platforms. Today, cross-
platform development of the "canonical" (official) Csound source code continues by a world-wide group of
Csound users, coordinated by John ffitch, who update "canonical" (officially supported) versions of the lan-
guage.

Like other software music compilers (such as Cmix and cmusic) that have been written at academic
computer music centers, Csound has its roots in the very first music compilers, called Music I through
Music V, written by Max Mathews at Bell Labs beginning around 1957. In most of these compilers, the
fundamental means of creating or modifying sounds is a user-defined synthesis or signal processing algo-
rithm, called an instrument in Csound. The algorithm consists of a step-by-step sequence of mathematical
and logical operations, coded in the Csound compiler language, and then executed by the CPU. Often, these
operations are very similar to the types of operations that take place within the electrical circuits of hard-
ware synthesizers, amplifiers, mixing consoles and other types of audio gear. A particular instrument algo-
rithm, which generates a particular type of audio signal or timbre, might be likened to a particular "patch"
available on a hardware synthesizer or sampler. Alternatively, an algorithm might add reverberation, or
echos, to a previously created soundfile, or to the audio signals being generated simultaneously by some
other instrument within the same compile job.

Orchestra and score files

Csound is completely modular, providing the user with several hundred basic building blocks (called
unit generators) that perform specific types of operations. The inputs to, and outputs from, these unit gen-
erators are combined (or "patched together") to form the complete algorithm. In turn, several of these
instrument algorithms can be "playing" simultaneously within a Csound orchestra.

This "orchestra" requires performance input — something to play. Traditionally, academically-
devloped software music compilers, which pre-date the introduction of MIDI by about 25 years, have
employed a score file to provide this performance data. When viewed, the data within a score file is similar
in some respects to the data within a spreadsheet, or within a MIDI file that one creates with a software
sequencer or with a program such as MAX. Historically, howev er, this note and event list has been created
not by playing MIDI keyboard controllers, but by the more tedious method of typing all of this data into a
score file.1 To make sound with Csound, then, at least two files are needed: an orchestra file to provide one
or more "instruments" (sound generating or processing algorithms), and a score file to "play" these instru-
ments. To identify the functions of Csound files, a .orc extension is generally appended to the names of
orchestra files, while a .sco extension is appended to the names of score files.

Real time input and output

During the past fifteen years Csound has been expanded by additional modules and coding that pro-
vide real-time playback and, in addition to the traditional score file, MIDI file and/or real-time MIDI con-
troller input. 2 Even on powerful computer systems, however, MIDI input capabilities have not rendered tra-
ditional file-based score preparation procedures obsolete. In fact, most ECMC users who have worked both

1 By contrast, almost all recently developed software synthesizers, such as Super Collider and Reaktor,
employ real-time MIDI input.

2 Actually, even with MIDI input, a score file is still required, but typically will be reduced to a skeletal shell,
containing only some necessary input data that cannot be provided by MIDI controllers.

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 1

8.0 Eastman Csound Library

with MIDI and score file input, and with GUI as well as text-based interfaces to Csound, prefer to use score
files created with text-based programs. Certain types of musical material, such as melodic lines, often are
more easily or successfully realized by means of MIDI input; but other types of musical gestures and con-
cepts, such as algorithmic compositional procedures and certain types of rhythmic and textural procedures,
frequently are achieved more easily or successfully using the traditional score file input method. Most
importantly, in music with lots of note-to-note variables and nuances, one soon runs out of MIDI con-
trollers, or of hands to work these controllers, whereas score files can provide a virtually unlimited number
of parameters to control these variables.

Similarly, real-time playback, while offering the abundant advantages of immediate feedback, can
introduce constraints as well, and sometimes is not desirable. System throughput (getting those samples out
in time) becomes a paramount concern, often limiting the number and complexity of signal processing
operations possible, and/or the available "polyphony" (number of simultaneous sounds), or requiring lower
sampling rates. Often there is no easy method to audition Csound’s output in real-time and, simultaneously,
to write these samples into a soundfile.

When using the real-time playback and/or MIDI input capabilities of Csound, you frequently will be
aw are of such trade-offs and constraints. Hardware synthesizers, used in conjunction with sequencers, pro-
vide a guaranteed number of multi-timbral "voices," but often severely limit the programmability of these
voices. With software-based synthesis, these advantages and disadvantages often are reversed.

Fr ont-end programs and applications that run Csound

Although Csound provides powerful and highly extensible procedures for sound generation and mod-
ification, many new users initially find the syntax of the Csound language "complicated", "old-fashioned"
or "unfriendly," its learning curve uncomfortably steep, and the initial results of their efforts musically dis-
appointing. As with many comprehensive software packages, a certain critical mass of procedural and
technical information is required before the user can accomplish anything worth listening to, and musically
satisfying results often come only after some experimentation, head scratching, fiddling and, perhaps, curs-
ing.

Many types of front-end programs and applcations, built on top of the canonical Csound source code,
have been written and distributed in attempts to simplify the usage of Csound. Most of these front-ends
employ graphical user interfaces in place of the "canonical" command line interface, and many also incor-
porate working procedures or features that are unique to a particular operating system platform.3 Some
notable examples of these front-end applications include Cecilia (Linux, Macintosh and Windows),
CsoundVST and CsoundAV (Windows), MacCsound (can you guess which platform?), and Blue and
HPKComposerCsound (java).

The Eastman Csound Library, too, attempts to address some of these initial hurdles, providing vari-
ous plug-and-play modules that allow one to begin using Csound, and experimenting with some of its
resources, more quickly, without immediately becoming immersed in details. This ECMC Library, which
has been in use and under development for over twenty years, enables ECMC users new to Csound to
begin working near the top, rather than bottom, of this modular sound synthesis process, selecting from
among a collection of pre-defined instruments to be included in his/her orchestra file, and providing tem-
plates to produce score files for these isntruments by means of a program called score11. Additional utili-
ties also are provided to simplify and speed up many common tasks associated with using and running
Csound.

Around 1980 Aleck Brinkman wrote the initial version score11, a front-end preprocessor that enables
users to create many types of Csound score files more quickly, easily and intuitively.4 Today, sev eral score
file preprocessors for Csound are available, and many expert Csound users write their own pre-processors
to generate score files (and sometimes orchestra files as well). However, in my experience, score11 —
whatever its faults — remains the most powerful score file generating program for Csound.

Currently score11 is only available for Linux and certain other Unix-based latforms. A few years ago
Mikel Kuehn, an ECMC alumnus now teaching at Bowling Green State University, wrote a similar score
preprocessor called ngen, available for Windows and Macintosh and well as Linux systems, that also is

3 score11 originally was written for Music11, the predecessor of Csound which ran on Digital Equipment
Corporation PDP-11 computers.

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 2

8.0 Eastman Csound Library

available on madking. score11 and ngen share similar capabilities as well as a similar syntax. If you know
one of these programs you can learn the other fairly quickly. Most of us who know both programs, how-
ev er, tend to use score11, which has a few powerful features (particuarly with regard to tempo warping) that
are not currently available in ngen.

Most of the remaining pages in this section are devoted to basic procedures for using the "pre-set"
Eastman instrument algorithms, to preparing Csound compilation jobs and to alternative ways of running
these jobs. More complete documentation on particular instrument algorithms and other resources intro-
duced or mentioned here is available in the document The Eastman Csound Library, available in rooms 52
and 53.

8.1. Score-based library instrument algorithms

Tw o basic types of orchestra file instrument algorithms are available within the Eastman Csound
Library:

(1) those that require performance input from a score file, and
(2) algorithms that require performance input from MIDI controllers, or from a MIDI file

For a variety of reasons, these two types of algorithms tend to be mutually exclusive. Howev er, a few
instrument algorithms with similar names (such as samp and midisamp) exist in alternative versions, one
requiring score parameter field input, the other MIDI input. This subsection covers the score-based algo-
rithms.

To obtain a list of the score-based instruments and processing modules available on the machine on which
you are working, type

lsins

The following resources are available for each of these instrument algorithms:

1) an online and hardcopy manual page
To display one of these documents in a shell window, type

man instrumentname
(where instrumentname is the name of the instrument algorithm, e.g. marimba).
Hardcopy of all of these man pages, and of available score templates and example scores (see below) is included in the studio

document The Eastman Csound Library. A selected sampling of these man pages, score templates and example scores for a

few of the most frequently used library algorithms are included later in this User’s Guide section.

2) a score11 template
A score11 template provides all of the necessary (and some optional) functions and commented
parameter field (p-field) input arguments necessary to prepare a score file for a particular instrument.

These p-field arguments provide an instrument algorithm with values that vary from note to note,
such as pitch. Score p-fields thus function somewhat like note-on, key number, velocity sensitivity and other
MIDI controller signals. Note, however, that p-field values are note initialization arguments that remain
fixed throughout the duration of a note (like MIDI note number signals, but unlike the continuous controller
data from a MIDI modulation wheel or pitch wheel).

A function is a table of numbers. The numbers within a function table may define an audio
waveshape (such as a sine wav e), or a control shape (such as a linear or exponential amplitude envelope
shape), or simply a series of values that are used or processed in some manner by the instrument algorithm.
Function definitions included within score11 files begin with an asterisk, and often look rather cryptic to
new users, since they tell function generating subroutines within Csound how to create a desired function.
One of the first things that Csound must do, before it can compute sound samples, is to create and load into
RAM a table for each function specified in a score file. If you run the csound command with the (default)
display option, the compiler also will display these functions graphically on your monitor.

The command lstp sc
("list templates for score11") will print a list of available templates. There is one template for each instru-
ment.

The command sctp
("score11 template") followed by the names of one or more instrument algorithms, will display in your

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 3

8.1 Score-based library instrument algorithms

shell window a score template for the requested instruments. To use a template to create a score by "filling
in the blanks," redirect the output into a file

sctp marimba > filename

Then edit this file with a text editor.

3) one or more example scores

These example scores illustrate typical (if often didactic and bland) usages of an instrument, or spe-
cial features, as well as some of the resources of score11.

To see a list of available example scores, type
lsex

To display one or more of these examples scores on your monitor, type
getex file(s)

The examples scores can also be redirected into a file, for printing or more leisurely viewing :
getex marimba1 > filename

4) compiled soundfiles of the example scores

The example scores have been compiled into soundfiles that are located within the /sflib/x soundfile
directory. To list the current soundfiles in this example directory, type

lsfsflib x or lsfl x

To display the soundfile header information for one of these soundfiles, type:

sflibinfo x/filename or sfli x/filename

To play one or more of these soundfiles from a shell window, type:
playsflib filename(s) or psfl filename(s)

Finally, should you would wish to see a master list of these various types of Csound Library (cslib) files for
score-based instrument algorithms, type :

lscslib or lscsl
To view this rather lengthy listing one screenful at a time, pipe this command into a window paging program such as less or more:

lscslib | less

8.2. Procedures for creating soundfiles with the score-based Library instruments

There are several things that you must do before you can create a soundfile using the score-based
Library instrument algorithms:

1) Create a Csound orchestra file that includes one or more of the Library algorithms:

A script called mko ("make orc hestra file") (discussed below) can be used to automate all or most of this
process. This step might be likened to pushing some buttons on a hardware MIDI synthesizer or sampler in
order to select one or more particular timbral "patches" (or "programs") for use.

2) Create a score file for this orchestra to play:
• First, using the command sctp, obtain a score11 score template for one or more instruments in your
orchestra, capturing these templates into a file; then
• edit the template(s) in this score file, typing in the p-field values you want; then
• run this edited score file through score11 to produce the actual score file, in Csound format, that
Csound will use to compute the soundfile.

This step could be likened to recording some performance data with MIDI controllers into a hard-
ware or software sequencer, but not yet being able to hear the results of your playing.

3) Use the executable csound command to compile your orchestra and score files, compute the samples
and write these samples into a soundfile in your current working soundfile directory on the snd disk.

Alternatively, you can use the command csoundplay to run Csound in real-time mode. Instead of
writing the samples into a soundfile, Csound will pass them to the system audio hardware for digital-to-ana-
log conversion and instant playback.

The three numbered steps above are covered in the following three subsections.

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 4

8.2.1 Preparing orchestra files

8.2.1. Preparing orchestra files

There are two parts to most Csound orchestra files:

1) a short header, which specifies certain required global variables, used by all of the instruments in
your orchestra. These variables determine important format characteristics of the soundfile, as well as
how it will be computed.

2) definitions for one or more instrument algorithms

Three global variables for the orchestra are set in the header:
• sampling rate (the Csound global variable sr) : Csound can generate output sound samples at any
sampling rate that is usable on the sound card of a system. The most common sampling rates used in
the ECMC studios are 44100 and 96000. The sound cards on the ECMC production systems support
abitrary sampling rates up to 96k. Sampling rates lower than 44100, such as 32000 or 22050, occa-
sionally are useful to avoid glitches when employing complex algorithms with real time output, or for
initial tests, to speed things up when the highest possible output quality is not required.

• control rate (the global variable kr) : We don’t need to compute 44100 or 96000 values per second
to accurately represent a vibrato at 5 hertz. Computing this vibrato signal at a much lower rate, per-
haps somewhere between 1000 and 5000 times per second, will provide a perfectly acceptable result
and save a little computation time. Control signals are not heard as audio signals themselves, but
rather are used to impose a time-varying envelope on some parameter of an audio signal such as
vibrato (periodic time varying pitch changes), glissandi, or amplitude fade-ins and fade-outs.
Control rates are often set quite low — perhaps as low as 1/100 of the sampling rate — for initial
tests, and then can be increased for production runs. In setting the control rate, there is only one
restriction: The kr must be evenly divisible into the sampling rate. For a 44100 sampling rate, control
rates of 2205, 4410 and 8820 are common. When the sampling rate is set to 96000, typical control
rates are 2400, 4800 or 9600.

• number of output channels (the global variable nchnls) : Csound can create an arbitrary number of
output channels and pan audio signals between these channels. When working with the 4 channel
audio system in room 52, you will set this variable to 1 (mono), 2 (stereo) or 4 (quad).

The higher the sampling rate, the control rate and the number of output channels, the more load the Csound
compile job will put on a system. However, with today’s computers, this usually is not an issue.

Creating orchestra files with mko

Unix programs that begin with the character string mk ("make") usually automate a series of several
commands or operations to produce a usable output. Using the mko ("make orc hestra file") script we can
specify the header values and instrument algorithm(s) we wish to use as arguments on a single command
line. With these input arguments, the script will

(1) create a scratch macro file named temp.orc. A macro is a short character string that is used either
as an abbreviation for a much longer string of characters, or else as a pointer to particularly files or
other system resources.
(2) Next, mko will run this source file through a Library program called m4orch to expand the macros
into a usable Csound orchestra file, called orch.orc (which can be abbreviated orc) in your current
working Unix directory.

The command line syntax of mko has one required argument and several optional arguments that can be
included to override defaults:

mko [- or -nh] [SR] [kr KR] [NCHNLS] INSTRUMENT(S) [-O scratchfile]

where
• SR (optional) sets the sampling rate. The default is 44100.

Based on the sampling rate you provide, mko will select an appropriate KR (control rate) argument automat-
ically. Usually this will be 1/10 of the sampling rate. In order to override this default control rate:

• include the flag k2 followed by a space and the control rate you want.
• NCHNLS (optional) specifies the number of output channels, and usually should be set either to 1,
the default, for mono, or else to 2 for stereo ;
• INSTRUMENT(S) is a list of one or more names, in CAPS, of any Library instrument algorithms

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 5

8.2.1 Preparing orchestra files

you wish to include, such as MARIMBA or GRAN.

Additional command line options for advanced users:
If the first argument on your command line is a minus sign (-), this flag instructs mko NOT to expand the source file into an orch.orc
file.
This can be useful if you wish to edit and modify this source file too add further signal processing, and then run their edited version of
the file through m4orch to create the Csound orchestra file.
A -O (capital O, not a zero) flag, followed by a file name, instructs mko to write the source file into filename rather than into the
default (and frequently overwritten) temp.orc file. Again, this is generally most useful if you wish to edit the file before expanding it,

and don’t want this edited file to be overwritten.

Unless your command line also includes the - ("no expand") option, mko will expand this alternative
source file into a Csound orch.orc file. This file can be abbreviated orc.

Example 1: Example 2: Example 3:
mko MARIMBA mko 96000 2 GRAN mko 48000 kr 9600 2 SAMP TSAMP

Example 1: An Csound orchestra file named orch.orc (a.k.a. orc) is created for Library instrument
marimba. All defaults are used for the header. The sampling rate will be 44100 and the orchestra output
will be mono.
Example 2: A stereo orchestra file with a sampling rate of 96k is created for Library instrument gran.
Example 3: A stereo orchestra file that includes Library instrument algorithmns samp and tsamp is created.
The sampling rate is set to 48000. Normally this would set the control rate to 4800. To achieve slightly
higher resolution for all control rate signals we have overridden this default and have raised the kr rate to
9600.

For the curious: How mko works
When you type the command in Example 1 above, mko first parses your arguments, searching for arguments that make sense

as sampling rate and number of channels arguments. If it does not find a sampling rate or a number of channels argument, it fills in
default values. Next, it converts your arguments in macros and writes these macros to a temporary file called temp.orc that looks like
this:

SETUP(44100,4410,1)
MARIMBA

Next, mko runs this scratch file through a Library script called m4orch, which also parses the file, searching for macros that are defined
in Library configuration files. SETUP is one of these macros. It indicates that the three arguments that follow in parentheses, separated
by commas, are respectively the sampling rate, control rate and number of channels to be used in the orchestra header. m4orch also
recognizes the macro MARIMBA, which "points to" the file containing Csound code for instrument marimba. If m4orch encounters an
argument that it does not recognize as a macro, it returns an error message. Otherwise it expands all of the macros into Csound code
and writes this code to the file orch.orc.

8.2.2. Preparing score files

After (or, if you prefer, before) creating a usable Csound orchestra file (orch.orc), you’ll want to give
your band something to play. To accomplish this, you need

(1) to create an input file to score11 for the instrument(s) in your orchestra,
(2) then edit this file to fill in parameter values, and then
(3) run the file through score11 to produce a Csound score file.

To obtain a template for this score file, type:
sctp INSTRUMENT(S)

where INSTRUMENT(S) are the names of the Library instrument algorithms, in lower case, you wish to
use.
Examples:

sctp marimba
will bring a score template for instrument algorithm marimba to your shell screen. To redirect this template
into a file, instead of bringing it to your shell window, use the Unix redirect symbol > followed by a file
name.

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 6

8.2.2 Preparing score files

sctp samp tsamp > samptest1
Result: Templates for instruments samp and tsamp are written into a file named samptest1.

While you are learning to use particular Library instrument algorithms, I recommend that you generally limit your scores to a single

instrument. Even one of these puppies may cause you quite enough aggravation during the first few attempts. Even most advanced

users generally create most of their Csound soundfiles using only one or two instruments. Questions of balance and spatial placement

generally are resolved more quickly and easily by mixing several source soundfiles together, rather than by trying to compute the

whole thing correctly in a single monster Csound job.

Each instrument algorithm is different. Some require only a few parameters while others incorporate
a great many parameters. However, I hav e tried to apply a consistent format in numbering the most com-
mon p-fields. For most of the sound generating instrument algorithms:

p3 determines the start time of each note
du (duty factor) determines the duration of each note
p4 determines pitch, which usually can be supplied either in pch format (using notes in score11) or
else directly in hertz (cps)
p5 determines amplitude level, on a 16 bit integer scale of 0 to 32767 (maxamp) or, sometimes, a
floating point scale of 0 to 1.0 (maxamp)
p6 determines attack time (the time, at the very beginning of a note, during which the amplitude
rises from 0 to the p5 value)
p7 determines decay time (the time at the very end of the note during which the amplitude decays to
0)

Several instrument algorithms that simulate percussive timbres, such as marimba and drums, hav e
envelopes that consist entirely of short attacks and much longer decays. However, algorithms that simulate
sustaining instrumental timbres, such as bsn (bassoon), include an additional p-field (usually p8), labeled
atss ("attenuation of steady state"). This atss p-field, usually a multiplier for p5, determines the amplitude
level at the point just before the decay begins.
Tw o-note example:

p5 10000 < peak amplitude
p6 .1 < attack time
p7 nu .3/.5 < decay time
p8 nu .6/1.6 < atss

Result: For both of the two notes in this score, the amplitude will rise from 0 to 10000 (p5) over .1 second
(p6 attack time). For the first note, the amplitude will gradually decrease from 10000 to 6000 (p8 * p5), and
then will decay to 0 during the final .3 seconds of the note (p7). For the second note, the amplitude will
increase from the initial peak of 10000 up to 16000 (possibly producing the effect of a crescendo), then
decay to 0 during the final .8 seconds. The amplitude envelopes for these two notes would look like this:

amplitude envelope of first note

--- ..__
---- ___

- ---- ____
-----_________

- -
- -

-
- -

rise "peak" "steady state" atss decay
time: amplitude: portion value: time:
.1 10000 of note .6 = 6000 .3 seconds

A sample score template for Library algorithm carillon

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 7

8.2.2 Preparing score files

A score template for Library algorithm carillon is reproduced below. We hav e added line numbers
(which do not appear in the actual template) here to facilitate the discussion that follows.

1 < Score file for Library algorithm ### carillon ###
2 < Functions needed: 61 100
3 * f61 0 65 5 1. 64 .01; <exponential decay
4 * f100 0 1024 10 1.; < sine wave

5 CARILLON
6 rd
7 p3
8 du 306.2;
9 < p4 = pitch : if > 13. = cps, else pch

10 p4 no
11 < p5 = amplitude
12 p5
13 < p6 = attack time (normal range .005 - .02)
14 p6
15 < p7 = attack hardness (1. = ord. , normal range .7 - 1.5)
16 p7
17 < p8 = brightness (1. = ord. , normal range .4 - 1.5)
18 p8
19 < p9 = percent tremolo (normal range .04 - .09, use 0 for no tremolo)
20 p9
21 < p10 = tremolo rate (normal range 3. - 7.)
22 p10
23 p11 < a detuning p-field generally used only in chorused scores
24 end; <<< End of ### carillon ### score >>>

Whenever Score11 encounters the comment symbol < , as on the first two lines of this template, it
ignores the rest of the line. Comments are shown in italics in the example above.

The function definitions on lines 3 and 4 define an exponential decay and a sine wav e, the only func-
tions required by this algorithm. All functions required by an instrument algorithm are provided near the
top of its score template.

Lines 5 through 24 comprise the body of the score file, and generally alternate between explanatory
comment lines and the parameter value lines (indicated in bold type above) that we must edit to create our
score. On line 5 we must add two or three arguments to specify a start time for our score (generally 0) and
the number of beats, or else notes, that the instrument will "play."

On line 7 (p3) we must create a rhythm (starting times for each individual note) by employing a
score11 keyword routine such as rhythm, move or random selection. Line 6 enables us to add any amount
of random deviation to this rhythm. For a strictly metronomic (and possibly mechanical-sounding) perfor-
mance, simply leave the rd line blank. For a more "human-sounding" performance add a small value such
as .02, which will cause all notes except the first to deviate by somewhere between +20 milliseconds and
-20milliseconds from a rhythmically "perfect" performance. Line 8 (duty factor) specifies a default maxi-
mum duration for each note. The MAN page for this algorithm explains this default, and situations in which
you would want to change it.

The commented lines that precede each remaining p-field identify which aspect(s) of the sound are
controlled by the parameter. These comments generally provide a suggested range of values from which to
choose, and, often, a default, "neutral" ordinary value. Comment line 9 tells us that our pitch arguments in
p4 will be interpreted in cycles per second (hertz) whenever the value is greater than 13., otherwise in
octave-pitch-class notation (if we employ the Score11 keyword notes, which has been filled in on line 14
since it is the most common means to specify pitch). p11 can be used to detune pitches specified in p4, but

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 8

8.2.2 Preparing score files

this generally is done only in chorused scores, and is discussed in the MAN page to the chorus utility.

To help us get a handle on these p-fields, and to hear the results of various p-field values and Score11
keyword operations before we begin the task of creating our own score, we can consult one or more exam-
ple scores that are available for each instrument algorithm. If we type

lsex sc ("list example scores"),
we will find three example scores available for the carillon algorithm: carillon1, carillon2 and carillon3.
To view one of these tutorial example scores, type

getex filename.
To hear a soundfile compiled from this score, play the sflib/x soundfile with the same name as the example
score.

Editing a score file and running this file through Score11

We should now be ready to edit the template(s) included in our score11 input file with a text editor,
filling in the p-field values we desire. When our score input file is ready, we must run it through score11:

score11 scorefilename
This will create a usable Csound score file called sout (short for "score output"). We should take a look at
this sout file to make sure we are getting what you want in each p-field.

For advanced users: When we run score11, our input score file actually passes first through the Library m4 preprocessor, which

expands all macros, then passes this expanded version to score11 for processing. (For example, the instrument name gets con-

verted by the Library m4 script into a particular instrument number.) Should you wish to see your score file exactly as score11

will see it, type: m4expandsc filename

8.2.3. Running csound

Creating a soundfile with Csound

After creating a Csound orchestra file (orch.orc) and a Csound score file (sout), we are (finally!)
ready to lay down some sound with the csound command. The basic form of the this command is:

csound orch.orc sout

If you prefer (and most users do), you can use cs as an abbreviation for csound, and orc as an abbreviation
for orch.orc:

cs orc sout
Result: csound will compile orchestra file orch.orc and score file sout into machine code; it will then create
all of the functions specified in your score, loading them into memory and displaying them on your moni-
tor. (On Linux systems, the function display by default appears in a small high resolution graphic window.
You must click in this window to terminate the display.) Csound then will create a soundfile with the
default name of test, compute the samples, and write these samples into soundfile test.

The csound command has a great many options, which are discussed in the MAN page for this com-
mand (available online and in hardcopy in the Linux DOCS binder, as well as in the Csound Manual). The
most frequently used of these options are:

-o — specifies a name for the soundfile, in place of the default name test

-d — suppresses displays of the functions (if you don’t wish to see yet another sine wav e)

These options can be combined in your command line.

Example:
csound -d -o explosion.wav orc sout

Result: The functions will not be displayed, and the soundfile will be named explosion.wav.

The amount of computation time that Csound will require to create a complete soundfile depends
upon several factors, including sampling rate and control rate, the length and complexity of your score, and
the complexity of the instrument algorithm(s) you have called. Some simple csound jobs compute almsot
instantly, but complicated instrument algorithms or textures may require considerably more number crunch-
ing.

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 9

8.2.3 Running csound

While Csound is compiling a soundfile, it will send various diagnostic messages to your terminal.
These diagnostics are called the standard error message (abbreviated sterr). In addition to actual error mes-
sages (such as amplitude clipping or bad p-field values that may cause a score note to be deleted), the sterr
output provides other useful information. By watching the sterr output, for example, you can tell how much
of your score has been compiled into the soundfile so far, and the maximum amplitude computed for each
note. When all of the samples are written into the soundfile (the Csound job is completed and terminated),
you can play the soundfile.

For advanced users: Various types of job control, discussed and illustrated in section 2.7, can be applied to csound or mkc-

sound jobs, allowing us to run such jobs in the background and redirect the sterr message into a file, or to run a series of jobs (batch

jobs) in succession.

Running Csound in real-time mode: the csoundplay command

Csound has the ability to redirect the output samples so that instead of being written to a soundfile,
they are passed directly to the soundcard for digital-to-analog conversion and listening in real time. The
ECMC utility csoundplay (which can be abbreviated csplay or simply csp) can be used to automate this
operation. The command syntax is

csoundplay [OrchestraFile] [ScoreFile]
The default orchestra file is orch.orc, and the default score file is sout.

As one would expect, real-time playback works best with fairly simple instrument algorithms and
with scores that do not include many simultaneous notes. Sometimes, especially with instruments such as
marimba and carillon that calculate sounds from scratch with multiple oscillators, it may be necessary to
lower the sampling rate to avoid glitches in the sound. Once we have the score working to our satisfaction,
we can reset the orchestra file sampling rate to 44100 or 96000 and run csound in the normal manner to cre-
ate a soundfile. Consult the csoundplay MAN page for full details and bugs.

8.3. Using cecilia

Cecilia is a front-end "environment" for running Csound jobs. To open Cecilia, type cecilia (or else
the abbreviation cec) in a shell window. If you don’t want the application to tie up this shell window while
it is running you can follow this command with an ampersand:

cec &

Cecilia enables each user to customize his/her working environment within the application. Individual user
preferences can be set by selecting Preferences under the File menu, then editing values in the window that
opens. Your personal preferences are stored in a file called .ceciliarc in your home directory.

We hav e added some resources developed here at Eastman to the standard Cecilia distribution. In order to
access these Eastman resources, and also your home soundfile directory while working within the applica-
tion, however, your .celprefs must include certain definitions and pointers to these Eastman additions. To
create a .celprefs file that includes these items, type

mkcecprefs
in a shell window. After creating this file, you can edit it at any time while you are working within cecilia
by selecting Preferences under the File menu. In the Modules window advanced users can add the names of
directories that include their own Csound orchestra and score files. Clicking on the Set Utilities button
allows us to add our own choice of utility programs to one’s working environment. Clicking on the Set Ser-
vice Applications button allows one to set soundfile play, info or editor preferences, but it is unlikely that
you will ever want to change the default Service Application choices we have established.

Eastman modules added to Cecilia

A cecilia "module" consists of an orc/score pair — an orchestra file and a companion score file to "play this
orchestra." Note that the score file must be a Csound score file, such as the sout output files created by
score11), and not an input file to Score11. The directories (groups of modules) that we have added to
Cecilia include

(1) modules for the Eastman Csound Library, which includes score p-field based instrument algo-
rithms such as marimba and samp, as well as MIDI-based midiins algorithms such as midisamp;

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 10

8.3 Using cecilia

(2) modules for all of the orchestra/score file examples in the Eastman Csound Tutorial document.

To access one of these groups of modules:
• Click on File in the main cecilia window, then on New.
• In the list of available modules that appears, you should see ESMtutorial and ESMlibrary near the
bottom of the list.
• Clicking on ESMtutorial or ESMlibrary will pop open a listing of all of the "modules" available
within this directory, as well as

any subdirectories with additional modules, and
helpful README files

• Click on a module to select it and load the appropriate files into Cecilia for editing or compilation.
README files are opened in the same manner. Click on the Info button to display the contents of a
README file, or information about using a module file.
You can make all of these selections in quick succession by holding the mouse button down continu-
ously until you have found the module you want.

A CEC editor window will open, which will include (1) an orchestra file (either mono or stereo, or both, if
the algorithm is set up to create either mono or stereo output) and (2) a score file.

The ESMlibrary modules
The modules within the main ESMlibrary directory include score p-field based instrument algorithms from
the Eastman Csound Library, such as samp and marimba. If you select one of these algorithms in the main
ESMlibrary directory, the orchestra code for the algorithm will be loaded into the orchestra file section of
the cecilia editor window, but there will be no score file. You must create your own score file in a shell
window. Then, in the editor window, select Module, then Open Score File, and then, in the window that
opens, the name of the score file (usually sout, assuming that this file was created by means of Score11).

You now are ready to compile this orc/score pair in the main cecilia window, using either
• the Preview button to send Csound’s output samples directly to the DACs for listening, or
• the Write button to write the samples into a soundfile.

If you choose to write a new soundfile, name of this soundfile is determined in the name box in the main
cecilia window. Since the default names are ugly (the name of the "module" followed by .AIFF), you prob-
ably will want to change this name to something simpler.

The EXAMPLE subdirectory:

The ESMlibrary menu includes a subdirectory called EXAMPLES. If you select this directory, you will see
a list of available orc/score pairs, used to create example soundfiles in the sflib/x directory, that illustrate
typical usage of the instrument algorithm. These examples, with names such as marimba1, samp2 and
tsamp3, are identical do those that can be accessed with such commands as lsex and getex, except that the
input file to Score11 has already been converted into a sout file. Clicking on one of these modules loads it
into the cecilia’s editor, where it is ready for immediate compilation.

The MIDI subdirectory:
Modules within the MIDI subdirectory include MIDI-based (midiins) algorithms from the Eastman Csound
LIbrary, such as midisamp and midiwave. Default score files have been provided for each of these algo-
rithms, so they are immediately playable (unlike the score-based algorithms in the main ESMlibrary direc-
tory). A MORE_EX ("more examples") subdirectory includes additional examples for some of the midiins
algorithms. Be sure to read the README file within the MIDI subdirectory before trying to use these mod-
ules, and, after loading one of the midiins modules into Cecilia, click on the Info box for a quick usage
summary.

Currently, the MIDI modules are useful only for playing through the DACs. do not try to write the Csound
output into a soundfile.

The ESMtutorial modules
This group of modules includes all of the orchestra and companion score files presented in the Eastman
Csound Tutorial document (Schindler). These modules are loaded into Cecilia in the same manner
described above. Select

File -> New -> ESMtutorial -> (the module you want).
If you wish, you can edit the orchestra and/or score data within Cecilia’s window window. Alternatively,

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 11

8.3 Using cecilia

you can create new scores in a shell window and read them into Cecilia with the Open Score File option
under the Module menu in the Cecilia editor window.

Eastman Utilities

The Eastman utility programs we have added to those built-in to Cecilia are accessed under the Utilities menu in the main window.
Currently, these utilities include the following:

mktutsffuncs : many of the modules in section 5 of the ESMtutorial group (such as ex5-1 and ex5-3) require link pointers to particu-
lar soundfiles that are read in from the sflib directories. You can create all of these necessary links, without which some of these jobs
will not run, by clicking on the mktutsflinks button. This will create a series of files in your current working soundfile directory called
soundin.1, soundin.2 and so on.

rmtutsffuncs to remove all of the link files in your soundfile directory that were created by the mktutsflinks command, when you no
longer will be using modules such as ex5-1 and ex5-3, click on this button.

8.4. Using the MIDI-based Library instrument algorithms

The instrument algorithms that accept note and "event" performance data from MIDI controllers (or
from a MIDI file), rather than from p-fields within a score file, are contained within the midiins subdirectory
of the Eastman Csound Library. To see a list of the currently available midiins algorithms, type

lsmidiins
For information, beyond that presented here, on the capabilities of these algorithms and on how to use
them, consult the local help file midiins, or the final section of the hardcopy Eastman Csound Library
binder in rooms 52 and 53.

As with the score p-field based instruments already discussed, some of the midiins algorithms gener-
ate purely synthetic audio signals, "from scratch," while others read existing soundfiles into RAM and then
process the samples of these input sounds. In order to generate audio signals, or to process soundfile sam-
ples, the algorithm must be supplied with function definitions within a score file. Many of these functions
are identical to those included within the score templates for the score-based algorithms, enable Csound to
compute tables of numbers that represent one cycle of a synthetic wav e form, or the sample data of a
soundfile, or various types of curves or trajectories. However, the midifuncs files also include functions for
keymapping (a table that determines which of the available input soundfiles is to be used in response to
note-on signals from each of the 88 Clavinola keys) and for mapping MIDI controller data such as velocity
to such processing operations as output amplitude.

All of the midiins algorithms require a set of functions, and with most of these algorithms one can
choose from among alternative pre-defined sets, each of which will create a unique timbre or combination
of timbres. Each of these pre-defined sets of function definitions is contained within a file in the midifuncs
subdirectory of the Library. To see a list of currently available midifuncs files, type

lsmidifuncs
For information on the contents of these files, consult the local help file midifuncs.

By default, most of the midiins algorithms are mono-in and mono-out: they create a monophonic
source audio signal, or else process monophonic input soundfiles, and also output a mono signal. However,
this default monophonic output can be changed to stereo out, and various types of sound localization sub-
routines can be applied to determine the left-right spatial placement of each output sound.

A few instruments, however, are set up for stereo-in/stereo-out processing. The names of these
"instruments" begin with the characters ST, like the algorithm STmidisamp. Generally, these stereo algo-
rithms require stereo input soundfiles as well. The names of midifuncs files that incorporate groups of stereo
input soundfiles, usable by an algorithm such as STmidisamp, also begin with the characters ST, such as the
file STwinds.

MIDI controller data

Presently, the midiins algorithms have only been programmed to respond to controller input data that
is available on the Clavinola and MCS3.5 This likely will change in the future, so consult the midiins help-
file for information on further MIDI input possibilities that have been added since this writing. The MIDI

4 It is possible to bring your own MIDI controllers into the studio and connect them to MIDI in jacks on the
Studio MIDI interface. However, if an instrument algorithm has not been programmed to respond to a particular
type of MIDI controller input, such as aftertouch or breath control, this input will have no effect.

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 12

8.4 MIDI-based library instrument algorithms

signals currently recognized by the algorithms include:
• note on : A note is initiated when you depress a key on the Clavinola, or whenever a note event is
encountered within a MIDI file. These note-on messages are accompanied by note number and veloc-
ity messages.
• note number : Each key on a MIDI keyboard (and additional possible "keys" below and above the
range of an 88 key controller) is assigned a number between 1 and 127. The "middle C" key is num-
ber 60, which most often (but not always) is mapped to the pitch c4 ("middle C," or 261.6 hertz).
• velocity : A the velocity sensitivity controller within the Clavinola or some other MIDI performance
device measures the quickness (NOT the force or weight) with which a "key" is depressed.
• note off : A note currently sounding is terminated when you release the key on the Clavinola that
initiated this note, or, in a MIDI file, when a "note off" signal is encountered for a currently "active"
note

• The three Clavinola foot pedals:

☞ The RIGHT pedal (MIDI controller number 64) usually functions as a "sustain" pedal
This is a note initialization controller which sends out a single value at the onset of each note. The range of values should be

from 0 to 127. However, the resolution of the data created by the right pedal of the Clavinola is so poor that this pedal essen-

tially functions like a two-position on/off switch.

With most of the midiins algorithms, if you depress this pedal BEFORE playing a note, then play the
note, and then release the key (and, if you wish, the pedal), the note will sustain for up to 5 or 6 addi-
tional seconds (assuming that the input soundfile duration is this long) with a gradual decay in ampli-
tude. It is not possible to sustain a note or input soundfile at its full original amplitude with the right
pedal. Given the poor resolution of this Clavinola pedal, it makes relatively little difference whether
the pedal is depressed all or only part way down.

☞ The LEFT and MIDDLE foot pedals on the Clavinola (respectively MIDI controller numbers 67
and 66) each send out an on/off note-initialization signal at the beginning of each note. The pedal is
sensed as being either "down" or "up" at the onset of a note, and subsequent changes in pedal posi-
tion during the note have no effect.
With most of the midiins algorithms, these two pedals have been programmed to affect the articula-
tion of notes, with the left pedal producing sharper, more staccato-like attacks and decays than nor-
mal and the middle pedal producing a smoother, more legato-like articulation. The resulting change
in articulation quality is more apparent, and more useful, with some types of sound sources than with
other types. See the midiins helpfile for more details.

8.4.1. Performing in real-time: mkcsoundmidiplay

The simplest way to use the midiins algorithms along with the midifuncs files is by running the pro-
gram mkcsoundmidiplay. Using a series of arguments provided on a single command line, this script auto-
mates a series of operations and commands that cause Csound to

• accept real-time MIDI input (MIDI files cannot be used), and
• run in real-time playback mode, so that you instantly hear the results of your playing. Alas, no
soundfile is written, so currently the only way to record what you play is to a DAT tape running in
record mode in the Otari DAT deck.

The command line syntax for the script is:
mkcsoundmidiplay [SR] [CHAN] [GAIN##} [DUR##] FUNCTION INSTRUMENT

where :

☞ the [optional] SR argument determines the sampling rate (default = 44100)
☞ the [optional] CHAN argument determines the number of output channels (mono, the default, or
else stereo)

Additionally, if soundfile inputs are used, the CHAN argument also determines
the number of input channels (default = mono), and
if mono in/stereo out is specified, a particular procedure for panning the mono input soundfiles

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 13

8.4.1 mkcsoundmidiplay

to left-right stereo output locations
☞ the [optional] word GAIN, followed immediately (no space intervening) by a floating point number,
specifies an output gain (amplitude) multiplier
☞ the [optional] word DUR also must be followed immediately (no space intervening) by number; this
number specifies the maximum number of seconds for a "performance," after which the job will terminate.
The default value is DUR300 (300 seconds, or 5 minutes).
☞ the FUNCTION argument specifies the names of one or more function definition files (generally only
one file) in the midifuncs directory
and
☞ the INSTRUMENT argument supplies the name of an instrument algorithm from the midiins directory

Mercifully, the command name mkcsoundmidiplay can be abbreviated either mkcsmidiplay or mkcsmp on
your command line. If you type the command name (or one of its two abbreviations) with no arguments, a
usage synopsis will be displayed.

Simple examples:

(1) midiins algorithm wave generates a (frequently boring but occasionally useful) synthetic fixed wav e
form timbre. (The timbre does not change during the duration of a note.) Several midifuncs files, each spec-
ifying a particular audio wav e shape and resulting timbre, can supply the table of numbers that the algo-
rithm samples. If we wish to make wave play with a mellow triangular shaped wav eform, provided by midi-
funcs file triangle, and we are content to use all of the default mkcsoundmdiplay option values (sampling
rate = 44100, mono output, no amplitude gain or maximum duration modification), we can launch our per-
formance by typing

mkcsoundmidiplay triangle wave
After the script and Csound have created the necessary orchestra and score files and loaded the functions
into RAM, their diagnostic sterr output to our shell window will freeze. We now can play triangle wav es
for up to five minutes, the default maximum "performance time," experimenting with different key veloci-
ties and with the three Clavinola foot pedals. Should we wish to terminate the job before the full five
minute time limit — a very likely possibility — we can type a ˆc (control c) at any time to regain control
of our shell window.

(2) The midifuncs file strings includes sustained (4-6 second) contrabass, cello, viola and violin tones with
a keymapping covering almost the full 88 key range of the piano (although the very highest violin tones
may not be to our liking). To play these soundfiles with the midisamp algorithm, we could type

mkcsmp string midisamp

Optional arguments to mkcsoundmidiplay :

Sometimes it is necessary or desirable to tweak the optional arguments provided by mkcsound-
midiplay. For example, the "polyphony" (number of simultaneous notes) we desire may exceed the through-
put capacity of Csound or of the disks or audio hardware, resulting in hiccups or glitches in the sound, or
ev en in the audio buffer becoming clogged with garbage, necessitating manual termination of the job. (See
the BUGS section of the mkcsoundmidiplay MAN page.) If this happens (or, based on your past experi-
ences, you anticipate that it might happen), you can change the default 44.1 k sampling rate to a lower rate
supported by the audio hardware, such as 32000 or 22050. (Any of these possible SR arguments can be
abbreviated by its first two integers, if you wish; the argument 16 will set the SR to 16000, the argument 22
to 22050).
Note that the output sampling rate is totally independent of the sampling rate of any input soundfiles used. Csound will perform sam-

ple rate conversion on the fly.

If the results of our playing result in amplitude clipping, we can run the job again and include a GAIN
factor, such as

mkcsmp GAIN.67 alto1 midisamp
In this example, all output samples will be multiplied by .67, hopefully correcting the problem. Notice that
the amplitude multiplier argument must immediately follow the word GAIN, in CAPS, with no intervening
spaces.
Conversely, if what we play results in signal levels lower than desirable for good audio quality, we can
specify that all output samples be multiplied by a gain factor of, say, 1.8:

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 14

8.4.1 mkcsoundmidiplay

mkcsmp GAIN1.8 alto1 midisamp

The CHAN ("audio channels") argument provides us with several spatialization methods for localizing
mono source soundfiles or synthetic signals at various left-right stereo output positions. With CHAN option
1-2A ("1 in, 2 out, option A"), the lower the Clavinola key (MIDI note number) that initiates a sound, the
further it will be placed to the left, and the higher the key, the further to the right. Option 1-2C randomizes
left-right output locations. Options 1-2D and 1-2E also randomize the initial placement of each note, but,
in addition, introduce random (1-2D) or quasi-periodic (1-2E) spatial movement of the note throughout its
duration. All of these option arguments also can be provided with a lower case letter (1-2a, 1-2b, and so
on). See the man page for further details.

There are two reasons why one might wish to include a DUR argument to alter the maximum five minute
performance time:

• in the unlikely event that we wish to play for more than 5 minutes; or
• to check the maximum output amplitude value produced by what we play.

When Csound terminates "naturally," by reaching the maximum performance time specified and then shutting down, it

will print out an sterr message with the peak output value produced. If this value is fairly low — perhaps around 5000

or so — we can run the job again and include a GAIN argument to create higher output amplitude values and thus bet-

ter signal resolution. When mkcsoundmidiplay is terminated manually, with a control c, it will NOT print out the peak

amplitude.

Additional examples:

(1) mkcsmidiplay 32 2-2 GAIN1.6 STwinds STmidisamp
Result: The stereo source soundfiles in the STwinds function file are "played" by algorithm STmidisamp.
The sampling rate is set to 32000, and all output samples are multiplied by 1.6.

mkcsmp 44100 1-2d DUR25 sine midiplunk
Result: Timbres reminiscent of plucked strings, generated by instrument midiplunk, will be created at a
sampling rate of 44100. The output is stereo, with the tones randomly distributed, and randomly meander-
ing about, between the two speakers. The performance will terminate after 25 seconds (if we don’t abort the
job earilier), and the peak output amplitude value will be displayed.

8.4.2. Additional scripts for using the midiins algorithms

If we wish to edit (alter, or append to) the Csound code for one of the Library midiins algorithms, or
to edit a midifuncs file, or to create our own MIDI-based orchestra and score files (which may include func-
tion definitions for some of our own soundfiles), we cannot use the mkcsoundmidiplay command. Rather,
we must perform several operations, similar to those required for use of the score p-fields-based Library
instrument algorithms, before we can run Csound:

(1) Create an orchestra file that sets header values and then includes one or more midiins algorithms
and/or our own MIDI-based instrument algorithm(s).
(2) create a score file for this orchestra that includes all of the function definitions required by the
instrument algorithm(s) and a dummy function that sets a maximum performance time.
(3) Run the csound command, with appropriate flag options. If we wish to run Csound in real time,
with MIDI controller input, the script csoundmidiplay can simplify the task.

Creating an orchestra file: mkmidiorch

A script called mkmidiorch (which can be abbreviated mkmidio or mkmidiorc) can be used to create
a Csound orchestra file that includes an instrument algorithm (or, rarely, more than one algorithm) from the
midiins directory. Note that this script functions much like the mko script, but enables us to fetch files from
the midiins subdirectory, rather than from the score p-field-based ins subdirectory, of the Eastman Csound
Library. The command line syntax of mkmidiorch, howev er, is very similar to that of the command mkc-
soundmidiplay:

mkmidiorch [SR] [CHAN] [GAIN##} INSTRUMENT(S) [-O filename]

The SR, CHAN, GAIN and INSTRUMENT arguments function in exactly the same manner, and with exactly
the same options and defaults, as in the mkcsoundmidiplay command. The INSTRUMENT file must exist in
the midiins subdirectory; the default SR is 44100, the default CHAN value mono in and out, and the default

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 15

8.4.2 Additional scripts for using the midiins algorithms

GAIN multiplier is 1. Also by default, however, mkmidiorch will write its output Csound code into the file
orch.orc (which can be abbreviated orc). This file frequently is overwritten. If we intend to edit this orches-
tra file, and want to guard against inadvertently overwriting it with a mkcsoundmidiplay, mko or mkmidiorch
command, we can use the -O option to specify an alternative output file name.

Example mkmidiorch command lines:
(1) mkmidiorch midisamp

Result: The orchestra file orch.orc will be created (or overwritten), and will contain the code for midiins
algorithm midisamp. The sampling rate is set to 44100, and the number of output channels to 2.

(2) mkmidiorch 32 1-2e GAIN1.3 midiplunk -O mdiplunk.orc
Result: Orchestra file midiplunk.orc will be created (or overwritten), and will include the Csound code for
Library algorithm midiplunk. The sampling rate is set to 32000 and the output channels to stereo, with ran-
dom spatial positioning followed by quasi-periodic movement (CHAN option 1-2E) of the output sounds.
The orchestra file specifies that the output samples be multiplied by a GAIN factor of 1.3.

For more details, consult the mkmidiorch MAN page.

After creating orchestra files in this manner, advanced users can edit them, if desired, to alter the Csound
code and/or to include some additional Csound signal processing subroutines.

Obtaining Library score and/or function files for the midiins algorithms: getmidiscore and getmidi-
func

The command getmidiscore (abbreviation getmidisc) duplicates another of the individual steps
included in the mkcsoundmidiplay command: the creation of a score file that includes a file (or, rarely, mul-
tiple files) from the midifuncs directory, and appends a dummy function (f0, or "function number 0") that
sets a maximum performance time, after which a Csound job will terminate. The command line syntax is

getmidiscore [DUR##] FUNCTION(S)

As with the mkcsoundmidiplay command, the optional DUR flag, followed immediately by a number,
changes the default 300 second (5 minute) performance time to the number of seconds specified.

Example: getmidiscore vln
Result: midifuncs file vln, followed by the two lines

f0 300
e

(which set the maximum performance time to 300 seconds) will be displayed in your shell window. To cap-
ture this output to a file, use the Unix redirect sign > followed by a filename:

getmidiscore vln > vln.sco
The resulting output file vln.sco can now be used as a Csound score file input (in place of the sout), along
with an orchestra file that includes an algorithm such as mmidisamp.

Should you wish to capture only function definitions from a midifuncs file, without appending the f0
performance time limit required in score files for MIDI-based algorithms, use the command getmidifunc
instead of getmidiscore:

getmidifunc vln > vln.funcs
The resulting file vln.funcs, lacking the f0 definition, cannot be used as a Csound score file. Presumably, we
will wish to alter this file, or add some of our own function defintions, before adding the f0 300 and e lines
manually to turn this file into a usable Csound score file.

8.5. The samp and tsamp Library algorithms

Tw o of the most frequently used score-based Library instrument algorithms are samp (" sampler")
and tsamp ("Transposing sampler"). These are "sampler" algorithms that enable us to read in groups of
monophonic soundfiles, mix these soundfiles and apply various types of signal process (sound modification)
algorithms to them. Although the input soundfiles must be monophonic, the output of tsamp and samp can
be either mono or stereo. Companion versions of these algorithms, respectively named STsamp and
STtsamp, can be used to read in stereo input soundfiles, process them, and output the resulting samples to a
stereo soundfile.

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 16

8.5 The samp and tsamp Library algorithms

There is only one major difference between the samp and tsamp algorithms:
☞ With samp (and STsamp), one specifies particular output pitches, most often in pitch class notation
(by using the score11 keyword notes). Microtonal tunings, and alternative ways of specifyng the out-
put pitch, also are available.
☞ With tsamp (and STtsamp) by contrast, we specify desired transpositions, in half steps and, option-
ally, additional microtonal divisions. With non-pitched and quasi-pitched sound sources such as
speech, drums and ambient sounds like a waterfall, it often is more convenient or intuitive to think in
terms of shifting a sound up a minor third, or down a tritone, rather than to specify a particular "out-
put pitch," such as c4.

[A real-time midiins instrument algorithm similar to samp named midisamp enables us to transpose and process groups of soundfiles

that Csound "plays" in response to triggers from MIDI controllers. All references to MIDI-based Library algorithms and utilities in

the discussion that follows are printed in small font and are enclosed in square brackets. You can ignore these small font bracketed

inserts unless you will be using MIDI-based Library algorithms.]

The samp/tsamp algorithms also allow us to
• alter the amplitude envelope of the source sounds, by adjusting "peak" and "steady state" levels
and/or by adding fade-ins and fade-outs of arbitrary durations
• add time varying changes in timbral brightness within individual tones, or from note to note
• add chorusing ("fatten" the sound, or give the illusions of two or more "players," by reading in the
soundfile(s) more than once, with pitch detunings, delayed start times and other parameter variables
for these "echos")

Tw o other members of the samp/tsmp family, named bigsamp and bigtsamp, are respectively identi-
cal to samp and tsamp, but in addition include p-fields than enable us to add several types of time varying
pitch inflections, such as glissandi, vibrato, random frequency deviation. amplitude tremolo and random
amplitude deviations.

In order to read soundfiles into Csound for processing, the samp/tsamp and gran Library instruments
employ function definitions. A function (table of numbers) must be defined within the score file for input
soundfile to be used. Pre-defined function files that incorporate groups of sflib soundfile inputs are avail-
able within the funcs subdirectory of the Eastman Csound Library. To obtain a list of these functions, type

lsfunc (or else lsfuncs)

[The comparable command to display a list of available Library soundfile function definitions for MIDI based Library instruments is:

lsmidifunc]

To display one of these function files, type : getfunc functionname
(where functionname is the name of a function file) in a shell window. Examples:

getfunc vln
will display function file vln (a group of 44.1k multisample violin tones from /sflib/string)

getfunc zimb zith1
will display function files zimb (zimbalon multisamples) and zith1 (a zither multisample collection)

[The comparable command to obtain a soundfile function definition file for MIDI based Library instruments is: getmidifunc]

To include one or more of these function files within a score template for an orchestra that includes
samp, tsamp, STsamp or STtsamp, type

sctp f FunctionFile s samp (or tsamp)
The f flag tells the script that one or more function files, specified in the following argument(s), are to be
included. The s flag indicates that the following argument(s) are score11 template files. Example:

sctp f strings s samp
Result: The function file strings will be included within a score template for instrument algorithm samp.

Complete documentation on how to use these algorithms can be accessed by typing
man samp or man tsamp

A hardcopy printout of this man page, along with score templates and example scores, is included in the
Eastman Csound Library document in rooms 52 and 53.

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 17

8.6 Understanding input soundfile and keymap functions

8.6. Understanding input soundfile and keymap functions

At some point, it is likely that you will wish to use some of your own soundfiles with samp, tsamp or
gran. Or you might wish to create your own keymapped collection of sflib soundfiles, or perhaps a hybrid
collection that includes both sflib soundfiles and one or more of your own soundfiles. In order to do this,
you must create function definitions, comparable to those within the Library function definition files, for
each input soundfile. If you will be using these functions with Library algorithm samp or bigsamp, you also
will need to create additional functions for keymapping, which will tell samp which input soundfiles to use
for which pitches. Normally, creating these function definitions would require familiarity with the syntax
of Csound Function Table statements, and with some of Csound’s function generating GEN Routines.
These topics are beyond the scope of this tutorial (and also beyond the interests of many beginning users).
However, even if you have little knowledge of the syntax or workings of Csound, you can employ some
Library scripts to create files that include function definitions for input soundfiles, as well as keymapping
and other ancillary functions. Even for beginners, though, is helpful to be able to interpret (and thus, if nec-
essary, to be able to debug) the function definitions within the file you create.

If we type
getfunc xylo2

the following set of function definitions, suitable for inclusion in an input file to score11, will be displayed:

< ** xylo2 (xylophone medium mallets) functions ***
* f1 0 131072 -1 "/sflib/perc/xylo2.a4.wav" 0 0 0 ; < dur = 1.94
* f2 0 131072 -1 "/sflib/perc/xylo2.cs5.wav" 0 0 0 ; < dur = 1.86
* f3 0 131072 -1 "/sflib/perc/xylo2.fs5.wav" 0 0 0 ; < dur = 1.49
* f4 0 131072 -1 "/sflib/perc/xylo2.b5.wav" 0 0 0 ; < dur = 1.75
* f5 0 65536 -1 "/sflib/perc/xylo2.e6.wav" 0 0 0 ; < dur = 1.42
* f6 0 131072 -1 "/sflib/perc/xylo2.a6.wav" 0 0 0 ; < dur = 1.56
* f7 0 65536 -1 "/sflib/perc/xylo2.d7.wav" 0 0 0 ; < dur = 1.08
* f8 0 65536 -1 "/sflib/perc/xylo2.g7.wav" 0 0 0 ; < dur = 1.02
* f9 0 32768 -1 "/sflib/perc/xylo2.c8.wav" 0 0 0 ; < dur = 0.635
<; f99 = input soundfile function numbers & split points {in MIDI note numbers}
*f99 0 128 -17 0 1 71 2 75 3 81 4 86 5 91 6 96 7 101 8 105 9 ;
<; f98 = base pitches of input soundfiles {expressed in MIDI note numbers}
*f98 0 16 -2 0 69 73 78 83 88 93 98 103 108 ;
< **** End of XYLO2 functions *****

Following the syntactical requirements of score11, comments begin with a < symbol, each function defini-
tion is preceded by an asterisk (*) and each line of input to score11 (including function definitions) must
end with a semicolon, which specifies the end of a line.6

Within this display there are two types of function definitions:

1) Function numbers 1 through 9 (the lines beginning *f1 through *f9) instruct Csound to create and
load into RAM nine tables and, within each table, to read in all of the samples from one of the
sflib/perc/xylo2 soundfiles. Library instrument algorithms tsamp, bigtsamp and gran will use only
these nine functions, ignoring function numbers 99 and 98, for which they hav e no use.

2) The function definitions at the bottom of the file — *f99 and *f98 — create additional tables of num-
bers that are used by the samp and bigsamp algorithms in addition to the nine soundfile function defi-
nitions. The tables created by functions 99 and 98 include MIDI note number data and, together, cre-
ate a keymap, specifying which of the nine input soundfiles will be triggered by the output pitch you
specify for each note.

The first four p-fields (or arguments) within any Csound function definition specify, respectively,
p1 : the function number,
p2 : the time within the score (normally zero, as in all of the functions above) at which the function

5 A "line" of score11 code can exceed 80 characters, can include carriage returns, and can extend over any
number of physical lines, until terminated by a semicolon. A line of Csound orchestra or score file code, by con-
trast, can NOT include carriage return characters.

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 18

8.6 Understanding input soundfile and keymap functions

will be created,
p3 : the size of the table (in bytes) and
p4 : the Csound function generating subroutine that will create the function (-1 in the examples
above)

The actual data within the table is determined by the following p-field arguments:

(function parameters 1-4) (data within the table) (comments)
* f1 0 131072 -1 "/sflib/perc/xylo2.a4.wav" 0 0 0 ; < dur = 1.94
* f2 0 131072 -1 "/sflib/perc/xylo2.cs5.wav" 0 0 0 ; < dur = 1.86
*f99 0 128 -17 0 1 71 2 75 3 81 4 86 5 91 6 96 7 101 8 105 9 ;
*f98 0 16 -2 0 69 73 78 83 88 93 98 103 108 ;

How keymap functions work:

Ke ymap functions make use of MIDI note numbers to represent pitch and split points, even (as is
usually the case) when MIDI input is not being used. This might seem odd, but there is a simple reason:
MIDI note numbers are consecutively numbered integers, a requirement if this kind of Csound function ta-
ble is to work correctly. MIDI note numbers alsoare easier to deal with than floating point hertz values, and
they can be easily converted to hertz within the Csound code once they hav e served their purpose. f99 con-
tains the numbers of the soundfile function definitions (1 through 9 in the xylo2 example) alternating with
split points for these functions, expressed in MIDI note numbers. The data arguments in this table alternate
between

• LOW key values (the lowest MIDI note number that will trigger a soundfile)
and
• the number (here abbreviated NUM) of the function to be triggered by these keys

LOW NUM LOW NUM LOW NUM LOW NUM etc.

f99 0 128 -17 0 1 71 2 75 3 81 4 etc.

Thus, f1 (the soundfile xylo2.a4.wav) will be triggered by input from "MIDI keys" (converted to hertz) 0
through 70 (bf4)

f2 (xylo2.cs5.wav) by "MIDI keys" 71 (b4) through 74 (d5)
f3 (xylo2.fs5.wav) by "MIDI keys" 75 (ef5) through 80 (af54), and so on.

f98 specifies the BASE MIDI note number for each of the nine soundfiles, again expressed in terms of
MIDI note number. This BASE number is the MIDI key that will cause the soundfile to be played at its
original pitch level, without a downward or upward pitch transposition: 69 = a4, 73 = cs5 78 = fs5, and so
on. Using this value, the instrument can calculate the resampling ratio required to transpose the soundfile
to any higher or lower pitch level.

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 19

8.6 Understanding input soundfile and keymap functions

The midinote script

To gain some familiarity with MIDI note numbers, and how these numbers usually are mapped to
equal tempered pitches, you can experiment with a local script called midinote. Typing

midinote
with no arguments will display a table of MIDI note numbers and equivalent pitches, expressed in
score11 "notes" format, in octave pitch-class format, and in hertz. To display conversions only for partic-
ular MIDI note numbers and/or particular pitches expressed in score11 notes format, include the appro-
priate arguments on your command line. Example:

midinote as0 a4 92 112
will display:

MIDI note: score11 notes: pch: cps (hertz): Comment

22 as0 4.10 29.135
69 a4 8.09 440.0 "tuning A"
92 gs6 10.08 1661.219

112 e8 12.04

For more details, consult the midinote MAN page.

8.7. Creating your own soundfile and keymap functions

Either one or two steps are involved in creating your own collection of soundfile inputs for use with p-field-
based algorithms such as samp and tsamp [or for use with with MIDI-based instruments such as midisamp] :

(1) Creating a function definition for each input soundfile. These definitions will resemble the f1
through f9 functions within the xylo2 files discussed in the preceding pages. If you are creating func-
tion definitions for use with tsamp or gran, this is all you need.

(2) If instead you are creating function definitions for use with samp [or for use with a MIDI-based algorithm

such as midisamp] you also will probablly want to create keymapping functions similar to the f99 and f98
functions within the xylo2 examples.

The scripts available to simplify these two tasks include:

score p-field-based algorithms [MIDI-based algorithms]

(samp, tsamp,gran) (midisamp)

(1) scripts to create input mksffuncs [mkmidisffuncs]
soundfile function definitions: (required by samp, tsamp,gran) [required by midisamp]

(2) scripts to create KEYMAP mkkeymap [mkmidikeymap]
functions for input soundfiles: (often used with samp) [required by midisamp]

(not used with tsamp, gran)

Typing any of these four command names with no arguments will produce a usage synopsis.

Using mksffuncs [and mkmidisffuncs] :
Input to these scripts takes the form

mksffuncs soundfile1 soundfile2 ... soundfileN [> outputfile]
[or mkmidisffuncs soundfile1 soundfile2 ... soundfileN [> outputfile]]

where the "soundfile" arguments are the names of existing soundfiles within your own $SFDIR (current
working soundfile directory) or within any of the sflib directories. Generally, these soundfile names should
be typed in in order from the lowest pitched to the highest pitched. Each input soundfile you specify will be
assigned a successively higher function number, beginning with f1. See the mksffuncs [or mkmidisffuncs] man
pages for more options and details.

Example 1 : mksffuncs bass1.b2.wav scream1.e3.wav scream2.a3.wav scream3.cs4.wav

The result should look something like this::
* f1 0 524288 -1 "/sflib/voice/bass1.b2.wav" 0 0 0 ; < 8.37 sec

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 20

8.7 Creating your own soundfile and keymap functions

* f2 0 262144 -1 "scream1.e3.wav" 0 0 0 ; < 5.94 sec
* f3 0 524288 -1 "scream2.a3.wav" 0 0 0 ; < 11.88 sec
* f4 0 65536 -1 "scream3.cs4.wav" 0 0 0 ; < 1.09 sec

If this looks good to you, redo the command, this time capturing the output in a file:
!! > functionfilename

Example 2: mksffuncs cb.p.c1 sneeze SEC1/cry bamboo

Result: f1 will define soundfile sflib/string/cb.p.c1.wav (a contrabass pizzicato tone), f2 will define your
soundfile sneeze.wav, f3 will point to the soundfile cry.wav in your SEC1 soundfile subdirectory, and f4 will
define the sflib/perc soundfile bamboo.wav.

8.7.1. Using mkkeymap [and mkmidikeymap] :

After creating input soundfile definitions in the manner illustrated above, we are ready to create
keymap functions for these soundfiles (should we need them) by using the ECMC mkkeymap script [or the

mkmidikeymap script if we will be using the midisamp algorithm]. The command line syntax is:
mkkeymap NUM BASE LOW NUM BASE LOW NUM BASE LOW

[or mkmidikeymap NUM BASE LOW NUM BASE LOW NUM BASE LOW]

Each of our input soundfile functions receives three arguments:
(1) NUM specifies the function number (1 for f1, 2 for f2, and so on.)

(2) the BASE argument specifies either a base MIDI note number or a base pitch. When this BASE
MIDI key is played, or this BASE pitch is specified in a score11 file, the soundfile will sound at its
original pitch.

(3) the LOW argument specifies a keymap split point. MIDI keys (or output pitches) above this split
point, but lower than the next split point, will trigger this soundfile The LOW argument for the first
soundfile (f1) normally should be a 0 .

The BASE and LOW arguments can be given either in MIDI note numbers or else in score11 "notes" format
(e.g. c4 , ef5 etc.)

Example: Suppose we now wish to create keymap functions for the four soundfile function definitions we
created in Example 1 above, which look like this:

* f1 0 524288 -1 "/sflib/voice/bass1.b2.wav" 0 0 0 ; < 8.37 sec

* f2 0 262144 -1 "scream1.e3.wav" 0 0 0 ; < 5.94 sec

* f3 0 524288 -1 "scream2.a3.wav" 0 0 0 ; < 11.88 sec

* f4 0 65536 -1 "scream3.cs4.wav" 0 0 0 ; < 1.09 sec

Our command line might look like this:
mkkeymap 1 b2 0 2 e3 d3 3 a3 g3 4 cs4 c4

The resulting keymap function definitions will be displayed in our shell window:

< f99 = soundfile function numbers & keymap split points
*f99 0 128 -17 0 1 50 2 55 3 60 4 ;

< f98 = midi note numbers for base key { soundfile at original pitch}
*f98 0 16 -2 0 47 52 57 61 ;

The keymapping parameters within f99 and f98 are highlighted here in bold type.
f1 (soundfile bass1.b2.wav) will be triggered by any output pitch up to MIDI note number 49 (cs3). It
will sound at its original pitch when the output note is b2 (MIDI note number 47), and will be trans-
posed for all other pitches.
Soundfile scream1.e3 (f2) will sound at its original pitch when the output pitch is e3 (MIDI key num-
ber 52); it also will be triggered by any output pitch between d3 (50) and fs3 (54).
f3 (which defines soundfile scream2.a3.wav) will be triggered by output pitches between g3 (55) and
b3 (59), and will sound at its original pitch level when the pitch is a3 (57).
Output pitches at middle C (c4, MIDI note number 60) and above will trigger soundfile

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 21

8.7 Creating your own soundfile and keymap functions

screan3.cs4.wav (f4), which will be transposed for all notes except cs4.

If the keymap functions above look good they are ready for inclusion in an input file to score11. Redo the
command and either

• capture it to a file, then read or paste this file into a score11 input file; or else
• append the output of mkkeymap directly intothe end of the score11 input file:

!! >> score11filename

8.7.2. [Making keymap functions for MIDI-based Library instruments]

[Skip ahead to section 8.8 unless you will be using MIDI-based Library instruments such as midisamp].

The command line syntax of the mkmidisffuncs and mksffuncs scripts is identical, and they produce exactly the
same output, except that the mkmidisffuncs definitions are in Csound score file format while the mksffuncs output is is
score11 format. The mkmidikeymap and mkkeymap scripts likewise share a common input syntax, and produce similar
outputs.

To create soundfile function definitions and companion keymap functions for inclusion in a Csound score file
intended for use with a MIDI-based Library instrument, with the same hypothetical input soundfiles as in the examples
above, we would follow these steps:

(1) Create soundfile function definitions with mkmidisffuncs:
mkmidisffuncs bass1.b2.wav scream1.e3.wav scream2.a3.wav scream3.cs4.wav

This will display the following:
f1 0 524288 -1 "/sflib/voice/bass1.b2.wav" 0 0 0
f2 0 262144 -1 "scream1.e3.wav" 0 0 0
f3 0 524288 -1 "scream2.a3.wav" 0 0 0
f4 0 65536 -1 "scream3.cs4.wav" 0 0 0]

If this looks good, redo the command, this time capturing the output into a file: !! > voicesounds.sco

(2) Create companion keymap functions: mkkeymap 1 b2 0 2 e3 d3 3 a3 g3 4 cs4 c4

This will display:

; f99 = soundfile function numbers & keymap split points
f99 0 128 -17 0 1 50 2 55 3 60 4

; f98 = midi note numbers for base key { soundfile at original pitch}
f98 0 16 -2 0 47 52 57 61

f97 0 128 5 1 128 33 ; veloc to non-linear amplitude
f96 0 128 5 .005 120 1. 128 1. ; brightness scaling for midisampbright
f95 0 64 7 -1 32 1 32 -1 ; triangular moving pan for CHAN option 1-2E

f0 300
e

If the function definitions returned by mkmidikeymap look correct, we can redo this command, this time appending its
output to the end of our voicesounds.sco file, like this:

!! >> voicesounds.sco

This file is now ready for use (as a Csound score file) with the midisamp algorithm. All that we need do is create a suit-
able orchestra file, by typing something like

mkmidio 44100 1-2b midisamp

and then play our voice sounds with the command
csoundmidiplay orc voicesounds.sco

8.8. Summary list of Eastman Csound Library commands

1. Commands to LIST Library files:
These commands take no arguments. The output will be displayed in your shell window.

Score p-field based algorithms:
lsins : list available p-field-based instrument algorithms

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 22

8.8 Summary list of Library commands

sctp : list score11 templates for these algorithms
lsex sc : list example score11 files for these algorithms
lsfunc (lsfuncs) :list available function files for these algorithms

MIDI algorithms:
lsmidiins : list available midiins instrument algorithms
lsmidifuncs : list available midifuncs function files

lscslib, lscsl : provide master list of Library files available on this system

2. Commands to GET a COPY of one or more Library files

These commands require a file name argument. By default, the output of all of these scripts will be displayed in your shell

window. To redirect this output into a file, type

commandname argument(s) > filename

For a usage synopsis of any of these commands, type the command name with no arguments.

Score p-field based algorithms:
sctp : copies one or more score11 template files for the specified instrument algorithm(s)
getex : fetches one or more specified example score11 files
getfunc (getfuncs) : gets one or more files from the funcs directory

MIDI algorithms:
getmidiscore (getmidisc) : creates a Csound score file that includes the specified midifuncs files

getmidisc [DUR##] FUNCTION

getmidifunc (getmidifuncs) : copies a midifuncs function file

3. Commands to prepare an ORCHESTRA file :

For a usage synopsis of any of these commands, type the command name with no arguments.

Score p-field based algorithms:
mko (mkorch) : automates creation of a usable Csound orchestra file called orch.orc (orc)

mko [-] [SR] [NCHNLS] INSTRUMENT(s) [-O sourcefile]

For situations where mko is not suitable, as when using global Library instruments such as delays, type in a file that includes
Eastman Csound Library macrios:

SETUP(44100,4410,2)
GLOBALS
TSAMP([DELAYS])

Then type: m4orch filename to create the Csound orchestra file orch.orc.
m4orch (which can be abbreviated m4o) expands a source orchestra file with Library macro definitions into a usable Csound
orchestra file called orch.orc (orc)
m4expand : works like m4orch, but brings the output to your shell window rather than writing to it the file orch.orc
Note: The similar command m4expandsc expands Library macros within an input file to score11 so you can view the file
exactly as score11 will "see" it

MIDI algorithms:
mkmidiorch (mkmidio) : creates a usable Csound orchestra file that includes a midiins algorithm (A

MAN page for this command is available.)

mkmidio [SR] [CHAN] [GAIN###] INSTRUMENT(s) [-O filename]

4. Commands to create FUNCTIONS for INPUT SOUNDFILES

For a usage synopsis of any of these commands, type the command name with no arguments.

Score p-field based algorithms:
mksffuncs : creates user specified input soundfile functions for use within a score11 file for Library
isnttruments such as

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 23

8.8 Summary list of Library commands

samp, tsamp and gran.
mksffuncs soundfile1 soundfile2 ... soundfileN

mkkeymap : creates keymapping functions for these input soundfile functions
mkkeymap NUM BASE LOW NUM BASE LOW NUM BASE LOW etc.

MIDI algorithms:
mkmidisffuncs : creates user specified input soundfile functions for use with midisamp

mkmidisffuncs soundfile1 soundfile2 ... soundfileN

mkmidikeymap : creates keymapping functions for these input soundfile functions
mkmidikeymap NUM BASE LOW NUM BASE LOW NUM BASE LOW etc.

4. Commands to run CSOUND

For a usage synopsis of any of these commands, type the command name with no arguments.

Score p-field based algorithms:
csound (cs) : computes output samples and, by default, writes them to a soundfile named test (MAN

page available)

csound [flag options] OrchestraFile ScoreFile

csoundplay (csp) : runs Csound in real-time playback mode (MAN page available)

csp [OrchestraFile] [ScoreFile]

With no arguments the command uses the default files orc and sout).

cecilia : graphical front-end application for running Csound

MIDI algorithms:
mkcsoundmidiplay (mkcsmp, mkcsmidiplay) : automates running Csound in real-time playback
mode, with MIDI input, using a midiins algorithm and a midifuncs file (MAN page available)

mkcsmp [SR] [CHAN] [GAIN##] [DUR##] FUNCTION INSTRUMENT

csoundmidiplay (csmp, csmidiplay) : runs Csound in real-time playback mode, with MIDI input,
using the specified orchestra and score files (MAN page available)

csmp [OrchestraFile] [ScoreFile]

With no arguments the command uses the default files orc and sout).

5. Miscellaneous commands

chorus : choruses a suitable score11 input file (MAN page available)

mkcaltones : automates creation of a soundfile with calibration tones (MAN page available)

6. For advanced users: Commands to make soft links to soundfiles or to spectral analysis files on the snd disk

Score p-field based algorithms:
sflink : creates a file called soundin.# in your snd directory linked to a soundfile. (The # number of the soundin.# file is used
by the Library sf instrument algorithms)
lplink — creates a file called lp.# in your current working Unix directory, linked to an lpc analysis file on your snd directory.
(The "#" number of the lp.# file is used by algorithms resyn, xsyn, gxsyn or pt.)
pvlink : creates a link between a pv.# file and a pvanal file used by Csound unit generator pvoc
adsynlink : creates a link between an existing hetro analysis file and a new file called adsyn.#, used by the Csound adsyn unit
generator

8.9. Some additional information on using the Library score-based algorithms

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 24

8.9 Additional information for advanced users

8.9.1. Library control shape functions

The Library score11 template files and example score files include all function definitions required by
an instrument algorithm. Several of these instruments include subroutines that make use of control func-
tions to vary some parameter (such as vibrato or tremolo rate) between two values within each note. In such
cases, the control function determines the shape of the change between value 1 and value 2. (Note: It does
not matter if value 1 is higher or lower than value 2)

The most commonly used control functions are:

f50 : linear change between value 1 and value 2

f60 : exponential change between value 1 and value 2

f54 : the change between value 1 and value 2 follows the curve of the first quarter of a sine wav e

Symmetrical functions:

f52 : linear pyramid change from value 1 to value 2 and back to value 1

f52 : exponential pyramid change from value 1 to value 2 then back to value 1

f56 : change from value 1 to value 2 and then back to value 1 follows the shape of the first half of a
sine wav e

Value 2 to value 1:

f51 : linear change between value 2 and value 1

f61 : exponential change between value 2 and value 1

f54 : change between value 2 and value 1 follows the curve of the first quarter of a cosine wav e (or
second quarter of a sine wav e)

Example:

Library instrument bsn has 3 p-fields for vibrato rate. In p12 you specify an initial value, in p13 a
second value, and in p14 a function to control the shape of the change between your p12 and p13 values.
(In this instrument, the function is read exactly once per note.) Several possible control functions are pro-
vided in the template (functions 50, 51, 52, 53, 60, 61 and 62). The following values:

p12 3.; <First vibrato rate
p13 5.; <Second vibrato rate
p14 nu 50/ 60/ 52/ 51; < Function for change in vibrato rate

would produce the following results:

First note: the vibrato rate increases linearly from 3 herz (beginning of note) to 5 herz (end of note)
Second note: the vibrato rate increases exponentially from 3 herz (beginning of note) to 5 herz (end).
Most of the increase will come near the end of the note.
Third note: the vibrato rate increases linearly from 3 herz (beginning of note) to 5 herz (middle of
note), then back to 3 herz (end of note)
Fourth note: the vibrato rate decreases linearly from 5 herz (beginning of note) to 3 herz (end of
note)

Often, we wish to vary some value such as vibrato speed so that it sometimes increases within a note, sometimes
decreases, and sometimes becomes faster and then slower, or else slower and then faster. For note-to-note variety, we
also may wish to vary the rate (or shape) at which these changes occur — sometimes linearly (smoothly) and some-
times exponentially (more abruptly). All of these note-to-note variations could be achieved by using p-field values such
as the following:

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 25

8.9 Additional information for advanced users

p12 1. 3. 5.5; < vary opening vibrato rate between 3 and 5.5 herz
p13 1. 4. 6.5; < vary second vibrato rate within a similar range
p14 sets 5 50 52 60 62; < use various linear and exponential functions

For advanced users: After you learn how to create function definitions, you may wish to substitute some of their
own functions for those provided. Functions that will not be used in a score can be commented out, since they
take time to compile and also take up memory space.

Advanced users may also wish to include some of the Library functions in their own Csound instruments and scores. All
Library functions are available in a separate directory for such purposes. They can be listed by typing

lsfunc
To display one or more of these function definitions, type

getfunc function(s)
where function is the number or name of one or more Library functions. getfunc can also be used to redirect one or more function into
one of your score files. The command

getfunc 50 60 >> myscore.s1
would copy definitions for library functions 50 and 60 to the end of a score file named myscore.s1

8.9.2. Global instruments

A few Library "effects" instrument algorithms, such as re v (a reverberator) and delays, (a delay line)
do not generate audio signals themselves, but rather process (modify) signals that they receive from one or
more other instruments. These global post-processing instruments require additional global variable defini-
tions that must be included in an orchestra file beforethe names of any instruments to be used. These global
variables are created by means of the macro GLOBALS on a line by itself. Additional macros can be used
to route the outputs of other instruments into these global processing instruments, as in the following exam-
ples. Full details on these GLOBAL macros are provided within the MAN pages to these instruments.

The ECMC script mko is not well suited to creating orchestra files that include global isntruments.
Rather, you need to type in a macro file, then expand these macros into the usable Csound orchestra file
orch.orc by using te program m4orch:

m4orch filename

Here are two example macro files to illustrate this process:

Example macro file 1 Example macro file 2
SETUP(4410,4410,2) SETUP(44100,4410,1)
GLOBALS GLOBALS
SFS([REVIN]) BSN([DELAYSIN])
REV CSBN([DELAYSIN])

DELAYS

Results: In example 1 Library instrument sfs reads in existing stereo soundfiles and passes them to instru-
ment re v for reverberation. In example 2 instruments bsn and cbsn pass their output signals to the delay
line delays, which adds echos, flanging, comb filtering or some other delay line effect.

Added user code

After all computations have been performed by an instrument for a sample pass, the output is labeled
a1. If the instrument is stereo, the outputs are labelled a1 (left channel) and a2 (right channel). Most of the
instruments are monophonic by default, but some (such as re v and delays) can be either mono or stereo,
depending upon the value for NCHNLS in your header. All instruments send their output to the standard
output, where it is added to the output of any other instruments currently active, and eventually written to
the disk.

Advanced users can substitute any amount of additional Csound code for the standard out a1 output
statement in an instrument. The added code must be enclosed in matched delimiting pairs of parentheses
and square brackets. Here is an example:

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 26

8.9 Additional information for advanced users

SETUP(44100,2205,1)
COMMENT add 2 delays to marimba output
MARIMBA([aout multitap a1, .1, .5, .25, .2
out aout])

This will add two echos, .1 and .25 seconds after the onset of each note, to the marimba output.
Note that the left ([pair must immediately follow the instrument name, with no blank space intervening.
The concluding]) pair, howev er, can be preceded by blank spaces or a newline. Instrument definitions
which do not have matching ([and]) pairs will cause the error message

Parentheses not matched
and the csound job will abort. More information on adding code is contained in the Eastman Csound Tuto-
rial.

The COMMENT symbol : The ECMC universal comment symbol COMMENT can be used anywhere in a score11 input file or (as

above) within a macro file used to create a Csound orchestra file in order to document what you are doing. Whenever m4orch or

score11 encounter a comment symbol, they ignore the rest of this line. The shorter comment symbol < is more commonly used in

score11 input files.

Eastman Computer Music Center User’s Guide, Section 8 : Page VIII : 27

